In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope

Abstract

In-situ tensile tests have been performed in a dual beam focused ion beam and scanning electron microscope on as-grown and prestrained single-crystal molybdenum-alloy (Mo-alloy) fibers. The fibers had approximately square cross sections with submicron edge lengths and gauge lengths in the range of 9-41 μm. In contrast to previously observed yield strengths near the theoretical strength of 10 GPa in compression tests of ~1-3-μm long pillars made from similar Mo-alloy single crystals, a wide scatter of yield strengths between 1 and 10 GPa was observed in the as-grown fibers tested in tension. Deformation was dominated by inhomogeneous plastic events, sometimes including the formation of Lüders bands. In contrast, highly prestrained fibers exhibited stable plastic flow, significantly lower yield strengths of ~1 GPa, and stress-strain behavior very similar to that in compression. A simple, statistical model incorporating the measured dislocation densities is developed to explain why the tension and compression results for the as-grown fibers are different.

This is a preview of subscription content, access via your institution.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

References

  1. 1.

    M.D. Uchic and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing Mater. Sci. Eng, A 400-401, 268 (2005).

    Article  Google Scholar 

  2. 2.

    J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients Acta Mater. 53, 1821 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale Adv. Eng. Mater. 8, 1119 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns Philos. Mag. 86, 5567 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    K.J. Hemker and W.N. Sharpe: Microscale characterization of mechanical properties Annu. Rev. Mater. Res. 37, 93 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples Acta Mater. 56, 580 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression Annu. Rev. Mater. Res. 39, 361 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruber, and E. Arzt: Effect of orientation and loading rate on compression behavior of small-scale Mo pillars Mater. Sci. Eng, A 508, 241 (2009).

    Article  Google Scholar 

  9. 9.

    O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions Annu. Rev. Mater. Res. 40, 293 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    G.M. Pharr, E.G. Herbert, and Y. Gao: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations Annu. Rev. Mater. Res. 40, 271 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    D. Gianola and C. Eberl: Micro- and nanoscale tensile testing of materials JOM 61, 24 (2009).

    Article  Google Scholar 

  12. 12.

    H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique Scr. Mater. 57, 397 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars Acta Mater. 56, 4762 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip: Ideal shear strain of metals and ceramics Phys. Rev. B 70, 104104 (2004).

    Article  Google Scholar 

  15. 15.

    P.S. Phani, K.E. Johanns, G. Duscher, A. Gali, E.P. George, and G.M. Pharr: Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers Acta Mater. 59, 2172 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    M.B. Lowry, D. Kiener, M.M. LeBlanc, C. Chisholm, J.N. Florando, J.W. Morris Jr., and A.M. Minor: Achieving the ideal strength in annealed molybdenum nanopillars Acta Mater. 58, 5160 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    R. Maaβ, Van S. Petegem, C.N. Borca, and Van H. Swygenhoven: In situ Laue diffraction of metallic micropillars Mater. Sci. Eng, A 524, 40 (2009).

    Article  Google Scholar 

  18. 18.

    D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm: FIB damage of Cu and possible consequences for miniaturized mechanical tests Mater. Sci. Eng, A 459, 262 (2007).

    Article  Google Scholar 

  19. 19.

    J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale Appl. Phys, A Mater. Sci. Process. 80, 1625 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    H. Bei and E.P. George: Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy Acta Mater. 53, 69 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Dickinson and P.E. Armstrong: Temperature dependence of the elastic constants of molybdenum J. Appl. Phys. 38, 602 (1967).

    CAS  Article  Google Scholar 

  22. 22.

    D.S. Gianola, A. Sedlmayr, R. Monig, C.A. Volkert, R.C. Major, E. Cyrankowski, S.A.S. Asif, O.L. Warren, and O. Kraft: In situ nanomechanical testing in focused ion beam and scanning electron microscopes Rev. Sci. Instrum. 82, 063901 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    C. Eberl, D. Gianola, and K. Hemker: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques Exp. Mech. 50, 85 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    J.-Y. Kim and J.R. Greer: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale Acta Mater. 57, 5245 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    J.-Y. Kim, D. Jang, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale Acta Mater. 58, 2355 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    D. Frankel, S. Milenkovic, A.J. Smith, and A.W. Hassel: Nanostructuring of NiAl-Mo eutectic alloys by selective phase dissolution Electrochim. Acta 54, 6015 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    P. Roediger, H.D. Wanzenboeck, G. Hochleitner, and E. Bertagnolli: Evaluation of chamber contamination in a scanning electron microscope J. Vac. Sci. Technol. B 27, 2711 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    van W.F. Dorp and C.W. Hagen: A critical literature review of focused electron beam induced deposition J. Appl. Phys. 104, 081301 (2008).

    Article  Google Scholar 

  29. 29.

    S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface Acta Mater. 57, 503 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    H. Bei, S. Shim, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused-ion-beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal Appl. Phys. Lett. 91, 111915 (2007).

    Article  Google Scholar 

  31. 31.

    S.S. Brenner: Tensile strength of whiskers J. Appl. Phys. 27, 1484 (1956).

    CAS  Article  Google Scholar 

  32. 32.

    S.S. Brenner: Plastic deformation of copper and silver whiskers J. Appl. Phys. 28, 1023 (1957).

    CAS  Article  Google Scholar 

  33. 33.

    T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples Scr. Mater. 56, 313 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (materials synthesis and modeling) and the Center for Defect Physics, an Energy Frontier Research Center supported by the Office of Basic Energy Sciences, U.S. Department of Energy (materials characterization and testing). GMP gratefully acknowledges the Alexander von Humboldt Foundation for fellowship support during the period in which the work was performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George M. Pharr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johanns, K.E., Sedlmayr, A., Phani, P.S. et al. In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope. Journal of Materials Research 27, 508–520 (2012). https://doi.org/10.1557/jmr.2011.298

Download citation