Thermomechanical behavior at the nanoscale and size effects in shape memory alloys

Abstract

Shape memory alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, resulting in the properties of superelasticity and shape memory. At present, there is high scientific and technological interest to develop these properties at small scales and apply SMA as sensors and actuators in microelectromechanical system technologies. To study the thermomechanical properties of SMA at micro and nanoscales, instrumented nanoindentation is widely used to conduct nanopillar compression tests. By using this technique, superelasticity and shape memory at the nanoscale have been demonstrated in micro and nanopillars of Cu–Al–Ni SMA. However, the martensitic transformation seems to exhibit different behavior at small scales, and a size effect on superelasticity has been recently reported. In this study, we provide an overview of the thermomechanical properties of Cu–Al–Ni SMA at the nanoscale, with special emphasis on size effects. Finally, these size effects are discussed in light of the microscopic mechanisms controlling the martensitic transformation at the nanoscale.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    C. Liu: Foundations of MEMS (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).

    Google Scholar 

  2. 2.

    K. Worden, W.A. Bullongh, and J. Hayvood (Eds.): Smart Technologies (World Scientific, NJ, 2003).

    Google Scholar 

  3. 3.

    M. Kohl: Shape Memory Microactuators. (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  4. 4.

    K. Bhattacharya and R.D. James: The material is the machine. Science 307, 53 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    J.V. Humbeeck: Shape memory alloys: A material and a technology. Adv. Eng. Mater. 3, 837 (2001).

    Article  Google Scholar 

  6. 6.

    K. Otsuka and C.M. Wayman (Eds.): Shape Memory Materials. (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  7. 7.

    A.D. Romig, M.T. Dugger, and P.J. McWhorther: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51, 5837 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    J. Karoub: MEMS reliability key to acceptance. Smalltimes 4, 23 (2004).

    Google Scholar 

  9. 9.

    D.M. Tanner, T.B. Parson, A.D. Corwin, J.A. Walraven, J.W. Wittwer, B.L. Boyce, and S.R. Winzer: Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    J. San Juan and M.L. Nó: Damping behavior during martensitic transformation in shape memory alloys. J. Alloy. Comp. 355, 65 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    T. Waitz, V. Kazykhanov, and H.P. Karnthaler: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, and W.I. Milne: On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    T. Waitz, K. Tsuchiya, T. Antretter, and F.D. Fischer: Phase transformations of nanocrystalline martensitic materials. MRS Bull. 34, 814 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    A. Ibarra, D. Caillard, J. San Juan, and M.L. Nó: Martensite nucleation on dislocations in Cu-Al-Ni shape memory alloys. Appl. Phys. Lett. 90, 101907 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    M.L. Nó, A. Ibarra, D. Caillard, and J. San Juan: Stress-induced phase transformations studied by in-situ transmission electron microscopy. J. of Phys. Conf. Ser. 240, 012002 (2010).

    Article  CAS  Google Scholar 

  16. 16.

    M.L. Nó, A. Ibarra, D. Caillard, and J. San Juan: Quantitative analysis of stress-induced martensites by in-situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys. Acta Mater. 58, 6181 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    S. Miyazaki, Y.K. Fu, and W.M. Huang (Eds.): Thin Film Shape Memory Alloys. (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  18. 18.

    A.C. Fischer-Cripps: Nanoindentation. (Springer, New York, 2004).

    Google Scholar 

  19. 19.

    C.A. Schuh: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    W. Ni, Y.T. Cheng, and D.S. Grummon: Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl. Phys. Lett. 82, 2811 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    X.G. Ma and K. Komvopoulos: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    G.A. Shaw, D.D. Stone, A.D. Johnson, A.B. Ellis, and W.C. Crone: Shape memory effect in nanoindentation of nickel–titanium thin films. Appl. Phys. Lett. 83, 257 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    X.G. Ma and K. Komvopoulos: Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    K. Komvopoulos and X.G. Ma: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).

    Article  CAS  Google Scholar 

  25. 25.

    G.A. Shaw, J.S. Trethewey, A.D. Johnson, W.J. Drugan, and W.C. Crone: Thermomechanical high-density data storage in a metallic material via the shape-memory effect. Adv. Mater. 17, 1123 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    C. Liu, Y. Zhao, Q. Sun, T. Yu, and Z. Cao: Characteristic of microscopic shape memory effect in CuAlNi alloy by nanoindentation. J. Mater. Sci. 40, 1501 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    S. Rajagopalan, A.L. Little, M.A.M Bourke, and R. Vaidyanathan: Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented nanoindentation, and extensometry. Appl. Phys. Lett. 86, 081901 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    C.P. Frick, T.W. Lang, K. Spark, and K. Gall: Stress-induced martensite transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    A.J. Muir Wood and T.W. Clyne: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607 (2006).

    Article  CAS  Google Scholar 

  30. 30.

    H.S. Zhang and K. Komvopoulos: Nanoscale pseudoelasticity of single-crystal Cu-Al-Ni shape-memory alloys induced by cyclic nanoindentation. J. Mater. Sci. 41, 5021 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Zhang, Y.T. Cheng, and D.S. Grummon: Shape memory surfaces. Appl. Phys. Lett. 89, 041912 (2006).

    Article  CAS  Google Scholar 

  32. 32.

    W.C. Crone, H. Brock, and A. Creuziger: Nanoindentation and microindentation of CuAlNi shape memory alloy. Exp. Mech. 47, 133 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    A.J. Muir Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, and T.W. Clyne: Nanoindentation of binary and ternary Ni-Ti-based shape memory alloy thin films. Surf. Coat. Tech. 202, 3115 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    D.P. Cole, H.A. Bruck, and A.L. Roytburd: Nanoidentation studies of graded shape memory alloy thin films processed using diffusion modification. J. Appl. Phys. 103, 064315 (2008).

    Article  CAS  Google Scholar 

  35. 35.

    H. Zheng, J. Rao, J. Pfetzing, J. Frenzel, C. Somsen, and G. Eggeler: TEM observation of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2. Scr. Mater. 58, 743 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    A. Dwivedi, T. Wyrobek, O.L. Warren, J. Hattrick-Simpers, O.O. Famodu, and I. Takeuchi: High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J. Appl. Phys. 104, 073501 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    D.P. Cole, H. Jin, W.Y. Lu, A.L. Roytburd, and H.A. Bruck: Reversible nanoscale deformation in compositionally graded shape memory alloy films. Appl. Phys. Lett. 94, 193114 (2009).

    Article  CAS  Google Scholar 

  38. 38.

    J. Pfetzing-Micklich, M.F.X Wagner, R. Zarnetta, J. Frenzel, G. Eggeler, A.E. Markaki, J. Wheeler, and T.W. Clyne: Nanoindentation of a pseudoelastic NiTiFe shape memory alloy. Adv. Eng. Mater. 12, 13 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    X. Huang, J. San Juan, and A.G. Ramirez: Evolution of phase transformation behavior and mechanical properties with crystallization in NiTi thin films. Scr. Mater. 63, 16 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science. 305, 986 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    CAS  Article  Google Scholar 

  42. 42.

    C.P. Frick, S. Orso, and E. Arzt: Loss of superelasticity in nickel-titanium sub-micron compression pillars. Acta Mater. 55, 3845 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    J. San Juan, M.L. Nó, and C.A. Schuh: Superelasticity and shape memory in microand nanometer-scale pillars. Adv. Mater. 20, 272 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    C.P. Frick, B.G. Clark, S. Orso, P.S. Ribic, and E. Arzt: Orientation-independent pseudoelasticity in small-scale NiTi compression pillars. Scr. Mater. 59, 7 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills: Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 57, 3549 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    J. San Juan, M.L. Nó, and C.A. Schuh: Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    J. Ye, R.K. Mishra, A.R. Pelton, and A.M. Minor: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    V. Recarte, R.B. Perez-Saez, E.H. Bocanegra, M.L. Nó, and J. San Juan: Dependence of the martensitic transformation characteristics on concentration in Cu-Al-Ni shape memory alloys. Mater. Sci. Eng., A. 273–, 380 (1999).

    Article  Google Scholar 

  49. 49.

    V. Recarte, R.B. Perez-Saez, E.H. Bocanegra, M.L. Nó, and J. San Juan: Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni sahpe memory alloys. Metall. Mater. Trans. A. 33, 2581 (2002).

    Article  Google Scholar 

  50. 50.

    H. Horikawa, S. Ichinose, K. Morii, S. Miyazaki, and K. Otsuka: Orientation dependence of β11’ stress-induced martensitic transformation in a Cu-Al-Ni alloy. Metall. Trans. A 19, 915 (1988).

    Article  Google Scholar 

  51. 51.

    H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate micro-compression experiments. Scr. Mater. 54, 181 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    CAS  Article  Google Scholar 

  53. 53.

    A. Ibarra, J. San Juan, E.H. Bocanegra, and M.L. Nó: Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu-Al-Ni single crystals. Acta Mater. 55, 4789 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    J. Rodriguez-Aseguinolaza, I. Ruiz-Larrea, M.L. Nó, A. Lopez-Echarri, and J. San Juan: A new quantitative approach to the thermoelastic martensitic transformation: The density of elastic states. Acta Mater. 56, 6283 (2008).

    CAS  Article  Google Scholar 

  55. 55.

    J. Rodriguez-Aseguinolaza, I. Ruiz-Larrea, M.L. Nó, A. Lopez-Echarri, and J. San Juan: Thermodynamic study of the temperature memory effects in Cu-Al-Ni shape memory alloys. J. Appl. Phys. 107, 083518 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    Y. Chen and C.A. Schuh: Size effects in shape memory alloy microwires. Acta Mater. 59, 537 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    J. San Juan, M.L. Nó, and C.A. Schuh: Superelastic cycling of Cu-Al-Ni shape memory alloy micro-pillars. To be published.

  58. 58.

    A. Ishida and M. Sato: Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater. 51, 5571 (2003).

    CAS  Article  Google Scholar 

  59. 59.

    C.B. Carter and M.G. Norton: Ceramic Materials Science and Engineering. (Springer, New York, 2007).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MICINN) project MAT2009-12492 and the CONSOLIDER-INGENIO 2010 CSD2009 -00013, by the Consolidated Research Group IT-10-310 from the Education Department and by the project ETORTEK ACTIMAT-08 from the Industry Department of the Basque Government. CS acknowledges support from the U.S. Army Research Office through the Institute for Soldier Nanotechnologies at MIT. This work made use of the Center for Nanscale Systems (CNS) from Harvard University with the support of the National Nanotechnology Infrastructure Network (NNIN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose San Juan.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Juan, J.S., Nó, M.L. & Schuh, C.A. Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. Journal of Materials Research 26, 2461–2469 (2011). https://doi.org/10.1557/jmr.2011.291

Download citation