Size effects on the nanomechanical properties of cellulose I nanocrystals

Abstract

The ultimate properties of a fibrous composite system depend highly on the transverse mechanical properties of the fibers. Here, we report the size dependency of transverse elastic modulus in cellulose nanocrystals (CNCs). In addition, the mechanical properties of CNCs prepared from wood and cotton resources were investigated. Nanoindentation in an atomic force microscope (AFM) was used in combination with analytical contact mechanics modeling (Hertz model) and finite element analysis (FEA) to estimate the transverse elastic moduli (Et) of CNCs. FEA modeling estimated the results more accurately than the Hertz model. Based on the AFM-FEA calculations, wood CNCs had higher transverse elastic moduli in comparison to the cotton CNCs. Additionally, Et was shown to increase with a reduction in the CNCs’ diameter. This size-scale effect was related to the Iα/Iβ ratio and crystalline structure of CNCs.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5

References

  1. 1.

    S.-C. Beckandanedo, M. Roman, and D.G. Gray: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions Biomacromolecules 6, 1048 (2005).

    Article  CAS  Google Scholar 

  2. 2.

    D. Bondeson, A. Mathew, and K. Oksman: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis Cellulose 13, 171 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    A. Turbark, F. Snyder, and K. Sandberg: Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential J. Appl. Polym. Sci. 37, 815 (1983).

    Google Scholar 

  4. 4.

    T. Taniguchi and K. Okamura: New films produced from microfibrillated natural fibres Polym. Int. 47, 291 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    T. Zimmermann, E. Pöhler, and T. Geiger: Cellulose fibrils for polymer reinforcement Adv. Eng. Mater. 6, 754 (2004).

    Article  CAS  Google Scholar 

  6. 6.

    Azizi M. Samir, F. Alloin, and A. Dufresne: Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field Biomacromolecules 6, 612 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    V. Favier, H. Chanzy, and J.Y. Cavaille: Polymer nanocomposites reinforced by cellulose whiskers Macromolecules 28, 6365 (1995).

    CAS  Article  Google Scholar 

  8. 8.

    M.L. Auad, V.S. Contos, S. Nutt, M. Aranguran, and N.E. Marcovich: Characterization of nanocellulose reinforced shape memory polyurethanes Polym. Int. 57, 651 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    X. Cao, H. Dong, and C.M. Li: New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane Biomacromolecules 8, 899 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    I. Kvien, J. Sugiyama, M. Votrubec, and K. Oksman: Characterization of starch based nanocomposites J. Mater. Sci. 42, 8163 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    V.L.C. Lapa, J.C.M. Suarez, L.L.Y. Visconte, and R.C.R. Nunes: Fracture behavior of nitrile rubber-cellulose II nanocomposites J. Mater. Sci. 42, 9934 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    H. Liu and L.C. Brinson: Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites Compos. Sci. Technol. 68, 1502 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    D. Long and F. Lequeux: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films Eur. Phys. J. E 4, 371 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    K.H. Meyer and W. Lotmar: On the elasticity of the cellulose. (On the constitution of the partially crystallized cellulose IV) Helv. Chim. Acta 19, 68 (1936).

    CAS  Article  Google Scholar 

  15. 15.

    I. Sakurada, Y. Nukushina, and T. Ito: Experimental determination of the elastic modulus of the crystalline regions in oriented polymers J. Polym. Sci. 57, 651 (1962).

    CAS  Article  Google Scholar 

  16. 16.

    I. Sakurada, T. Ito, and K. Nakamae: Elastic moduli of polymer crystals for the chain axial direction Macromol. Chem. Phys. 75, 1 (1964).

    CAS  Article  Google Scholar 

  17. 17.

    A. Jaswon, P.P. Gillis, and R.E. Mark: The elastic constants of crystalline native cellulose Proc. R. Soc. London, Ser. A 306, 389 (1968).

    CAS  Article  Google Scholar 

  18. 18.

    K. Tashiro and M. Kobayashi: Calculation of crystallite modulus of native cellulose Polym. Bull. 14, 213 (1985).

    CAS  Google Scholar 

  19. 19.

    L.M.J. Kroon-Batenburg, J. Kroon, and M.G. Northolt: Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibres Polym. Commun. 27, 290 (1986).

    CAS  Article  Google Scholar 

  20. 20.

    M. Matsuo, C. Sawatari, Y. Iwai, and F. Ozaki: Effect of orientation distribution and crystallinity on the measurements by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23, 3266 (1990).

    CAS  Article  Google Scholar 

  21. 21.

    K. Tashiro and M. Kobayashi: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds Polymer 32, 1516 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    T. Nishino, K. Takano, and K. Nakamae: Elastic modulus of the crystalline regions of cellulose polymorphs J. Polym. Sci. 33, 1647 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    G. Guhados, W. Wan, and J.L. Hutter: Measurement of single bacterial cellulose fibers using atomic force microscopy Langmuir 21, 6642 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    F. Tanaka and T. Iwata: Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation Cellulose 13, 509 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Q. Cheng and S. Wang: A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy Composites 39, 1838 (2008).

    Article  CAS  Google Scholar 

  26. 26.

    S. Iwamoto, W. Kai, A. Isogai, and T. Iwata: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy Biomacromolecules 10, 2571 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    R.R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie, and R.J. Moon: Atomic force microscopy characterization of cellulose nanocrystals Langmuir 26, 4480 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    W.J. Lyons: Theoretical value of the dynamic stretch modulus of cellulose J. Appl. Phys. 30, 796 (1959).

    CAS  Article  Google Scholar 

  29. 29.

    J. Mann and L.-G. Roldanonzalez: X-ray measurements of the elastic modulus of cellulose crystals Polymer 3, 549 (1962).

    CAS  Article  Google Scholar 

  30. 30.

    L.R.G. Treloar: Calculation of elastic moduli of polymer crystals: III Cell. Polym. 1, 290 (1960).

    CAS  Article  Google Scholar 

  31. 31.

    B. Pittenger, N. Erina, and S. Chanmin: Quantitative mechanical mapping at nanoscale with peak force QNM, in Bruker Application Note (2009).

    Google Scholar 

  32. 32.

    B.V. Derjaguin, V.M. Muller, and Y. Toropovu.P: Effect of contact deformations on the adhesion of particles J. Colloid Interface Sci. 53, 314 (1975).

    CAS  Article  Google Scholar 

  33. 33.

    B. Ohler: Practical advice on determination of cantilever spring constants, in Bruker Application Note (2009).

    Google Scholar 

  34. 34.

    H. Hertz: On the contact of rigid elastic solids J. Reine Angew. Math. 92, 156 (1882).

    Google Scholar 

  35. 35.

    K.L. Johnson, K. Kendall, and A.D. Roberts: Surface energy and the contact of elastic solids Proc. R. Soc. London, Ser. A 324, 301 (1971).

    CAS  Article  Google Scholar 

  36. 36.

    J. Domke and M. Radmacher: Measuring the elastic properties of thin polymer films with the atomic force microscope Langmuir 14, 3320 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    S. Tan, R.L. Sherman Jr., and W.T. Ford: Nanoscale compression of polymer microspheres by atomic force microscopy Langmuir 20, 7015 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, and E. Riedo: Radial elasticity of multiwalled carbon nanotubes Phys. Rev. Lett. 94, 175502 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Y. Zhao, Z. Ge, and J. Fang: Elastic modulus of viral nanotubes Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 78, 031914 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    S.A. Chizhik, Z. Huang, V.V. Gorbunov, N.K. Myshkin, and V.V. Tsukruk: Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy Langmuir 14, 2606 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    V.V. Tsukruk, A. Huang, S.A. Chizhik, and V.V. Gorbunov: Probing of micromechanical properties of compliant polymeric materials J. Mater. Sci. 33, 4905 (1998).

    CAS  Article  Google Scholar 

  42. 42.

    G. Feng, Y. Yoon, and C.J. Lee: A study of the mechanical properties of nonowires using nanoindentation J. Appl. Phys. 99, 074304 (2006).

    Article  CAS  Google Scholar 

  43. 43.

    D. Tranchida, S. Piccarolo, and M. Soliman: Nanoscale mechanical characterization of polymers by AFM nanoindentation: Critical approach to elastic characterization Macromolecules 39, 4547 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Y. Habibi, L.A. Lucia, and O.J. Rojas: Cellulose nanocrystals: Chemistry, self-assembly, and applications Chem. Rev. 110, 3479 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    O.A. Battista, S. Coppick, J.A. Howsmon, F.F. Morehead, and W.A. Sisson: Level-off degree of polymerization Ind. Eng. Chem. Res. 48, 333 (1956).

    CAS  Article  Google Scholar 

  46. 46.

    T. Yachi, J. Hayashi, M. Takai, and Y. Shimizu: Supermolecular structure of cellulose: Stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment J. Appl. Polym. Sci. 37, 325 (1983).

    CAS  Google Scholar 

  47. 47.

    L.E. McNeil and M. Grimsditch: Elastic moduli of muscovite mica J. Phys. Condens. Matter 5, 1681 (1993).

    CAS  Article  Google Scholar 

  48. 48.

    M. Ioelovich, A. Leykin, and O. Fogovsky: Study of cellulose paracrystallinity Bioresources 5, 1393 (2010).

    CAS  Google Scholar 

  49. 49.

    B. Harris: Engineering Composite Materials (IOM Communications Ltd, London, 1999).

    Google Scholar 

  50. 50.

    S.J. Eichhorn and R.J. Young: The Young’s modulus of a microcrystalline cellulose Cellulose 8, 197 (2001).

    CAS  Article  Google Scholar 

  51. 51.

    R.H. Atalla and D. VanderHart: Native cellulose: A composite of two distinct crystalline forms Science 223, 283 (1984).

    CAS  Article  Google Scholar 

  52. 52.

    M. Roman and W.T. Winter: Cellulose nanocrystals: from discovery to application, in Proceedings of International Conference on Nanotechnology, Atlanta, Georgia, April 26-28 (2006).

    Google Scholar 

  53. 53.

    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction J. Am. Chem. Soc. 125, 14300 (2003).

    CAS  Article  Google Scholar 

  54. 54.

    A. Aabloo and A.D. French: Preliminary potential energy calculations of cellulose Iα crystal structure Macromol. Theory Simul. 3, 185 (1994).

    CAS  Article  Google Scholar 

  55. 55.

    Y. Nishiyama, P. Langan, and H. Chanzy: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction J. Am. Chem. Soc. 124, 9074 (2002).

    CAS  Article  Google Scholar 

  56. 56.

    V.L. Finkenstadt and R.P. Millane: Crystal structure of Valonia cellulose IβMacromolecules 31, 7776 (1998).

    CAS  Article  Google Scholar 

  57. 57.

    V.I. Kovalenko: Crystalline cellulose: structure and hydrogen bonds Russ. Chem. Rev. 79, 231 (2010).

    CAS  Article  Google Scholar 

  58. 58.

    A.A. Baker, W. Helbert, J. Sugiyama, and M.J. Miles: New insight into cellulose structure by atomic force microscopy shows the Iα crystals phase at near-atomic resolution Biophys. J. 79, 1139 (2000).

    CAS  Article  Google Scholar 

  59. 59.

    E. Malm, V. Bulone, K. Wickholm, P.T. Larsson, and T. Iversen: The surface structure of well-ordered native cellulose fibrils in contact with water Carbohydr. Res. 345, 97 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    X. Zheng, Y. Cao, B. Li, Z. Feng, and G. Wang: Surface effects in various bending-based test methods for measuring the elastic properties of nanowires Nanotechnology 21, 205702 (2010).

    Article  CAS  Google Scholar 

  61. 61.

    O.A. Battista: Microcrystal Polymer Science (McGraw-Hill, New York, 1975).

    Google Scholar 

  62. 62.

    K. Fleming, D. Gray, S. Prasannan, and S. Matthews: Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings J. Am. Chem. Soc. 122, 5224 (2000).

    CAS  Article  Google Scholar 

  63. 63.

    Y. Habibi, A.L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, and A. Dufresne: Bionanocomposites based on poly(E-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization J. Mater. Chem. 18, 5002 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    E.P.S. Tan and C.T. Lim: Physical properties of single polymeric nanofibers Appl. Phys. Lett. 84, 1603 (2004).

    CAS  Article  Google Scholar 

  65. 65.

    M.K. Shin, S.I. Kim, and S.J. Kim: Size-dependent elastic modulus of single electroactive polymer nanofibers Appl. Phys. Lett. 89, 231929 (2006).

    Article  CAS  Google Scholar 

  66. 66.

    S. Curgul, K.J. VanVliet, and G.C. Rutledge: Molecular dynamics simulation of size dependent structural and thermal properties of polymer nanofibers Macromolecules 40, 8483 (2007).

    CAS  Article  Google Scholar 

  67. 67.

    L. Sun, R.P.S. Han, J. Wang, and C.T. Lim: Modeling the size-dependent elastic properties of polymeric nanofibers Nanotechnology 19, 455906 (2008).

    Google Scholar 

  68. 68.

    C.B. Khatiwala, S.R. Peyton, and A.J. Putnam: Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells Am. J. Physiol. Cell Physiol. 290, 1640 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation for the Grant No. 0820884 from the Division of Materials Research (DMR) and the Grant No. 11000806/1100572 from DMR and Civil, Mechanical, and Manufacturing Innovation (CMMI) divisions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza S. Yassar.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pakzad, A., Smonsen, J., Heiden, P.A. et al. Size effects on the nanomechanical properties of cellulose I nanocrystals. Journal of Materials Research 27, 528–536 (2012). https://doi.org/10.1557/jmr.2011.288

Download citation