Skip to main content
Log in

Solvothermal synthesis of a highly branched Ta-doped TiO2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a low-temperature, hydrothermal synthesis method for Ta-doped TiO2. Here, alkoxide-based precursors are mixed at low temperatures to suppress differential hydrolysis and phase separation. This method ensures homogeneous, molecular mixing of the Ta dopant with the native oxide up to a concentration of ~2.5 at.%. X-ray diffraction and energy dispersive spectrometer analyses confirm a uniformly doped rutile TiO2. Scanning electron microscopy and transmission electron microscopy analyses reveal a highly branched structure. Optoelectronic properties of these structures were investigated using ultraviolet-visible spectroscopy and low-temperature photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. A.S. Barnard and P. Zapol: Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys. Rev. B 70 (23), 235403 (2004).

    Article  Google Scholar 

  2. H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7 (4), 663 (1995).

    Article  CAS  Google Scholar 

  3. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48 (5–8), 53 (2003).

    Article  CAS  Google Scholar 

  4. J. Du, X.Y. Lai, N.L. Yang, J. Zhai, D. Kisailus, F.B. Su, D. Wang, and L. Jiang: Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590 (2011).

    Article  CAS  Google Scholar 

  5. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  6. M.K. Nowotny and D.W. Bahnemann: Improved photocatalytic performance of rutile TiO2. Phys. Status Solidi RRL 5 (3), 92 (2011).

    Article  CAS  Google Scholar 

  7. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

  8. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).

    Article  CAS  Google Scholar 

  9. W. Zhou, Q. Liu, Z. Zhu, and J. Zhang: Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys D: Appl. Phys. 43, 1 (2010).

  10. X.C. Liu, F. Gao, L.L. Zhao, and C.S. Tian: Phase transition of low-temperature sintering tungsten-doped ZnO-TiO2 ceramics. J. Mater. Sci. Mater. Electron. 18, 863 (2007).

    Article  CAS  Google Scholar 

  11. N. Couselo, F.S.G. Einschlag, R.J. Candal, and M. Jobbagy: Tungstun doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism. J. Phys. Chem. C 112, 1094 (2008).

    Article  CAS  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  13. S. Zhang, Z. Zhao, C. Liu, W. Dong, X. Zhang, and W. Chen: Study on the optical properties of Mn-doped TiO2 thin films. J. Mater. Sci. 39, 2909 (2004).

    Article  CAS  Google Scholar 

  14. K.Y.S. Chan and G.K.L. Goh: Hydrothermal growth of ferromagnetic Fe-doped TiO2 films. Thin Solid Films 516, 5582 (2008).

    Article  CAS  Google Scholar 

  15. G.K.L. Goh, K.Y.S. Chan, and T. Liu: Hydrothermal epitaxy of ferromagnetic cobalt doped titanium dioxide films at 120 °C. Cryst. Eng. Comm. 13, 524 (2011).

    Article  CAS  Google Scholar 

  16. C. Wang, A. Geng, Y. Guo, S. Jiang, and X. Qu: Three-dimensionally ordered macroporous Ti1-xTaxO2+x/2 (x = 0.025, 0.05, and 0.075) nanoparticles: Preparation and enhanced photocatalytic activity. Mater. Lett. 60, 2711 (2006).

    Article  CAS  Google Scholar 

  17. B.J. Morgan, D.O. Scanlon, and G.W. Watson: Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J. Mater. Chem. 19, 5175 (2009).

    Article  CAS  Google Scholar 

  18. S.C. Navale, A. Vadivel Murugan, and V. Ravi: Varistors based on Ta-doped TiO2. Ceram. Int. 33, 301 (2007).

    Article  CAS  Google Scholar 

  19. C.C. Wang and J.Y. Ying: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).

    Article  CAS  Google Scholar 

  20. R. Long and N.J. English: Band gap engineering of (N, Ta)-codoped TiO2: A first-principles calculation. Chem. Phys. Lett. 478, 175 (2009).

    Article  CAS  Google Scholar 

  21. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  22. N.M. Kinsinger, A. Wong, D. Li, F. Villalobos, and D. Kisailus: Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water soluble precursor. Cryst. Growth Des. 10, 5254 (2010).

    Article  CAS  Google Scholar 

  23. B.P. Jiang, H.B. Yin, T.S. Jiang, Y.H. Jiang, H. Feng, K.M. Chen, W.P. Zhou, and Y.J. Wada: Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group-containing organics as modifiers. Mater. Chem. Phys. 98, 231 (2006).

    Article  CAS  Google Scholar 

  24. X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, and F. Pedraza: Local order in titania polymorphs. Int. J. Hydrogen Energy 26, 1279 (2001).

    Article  CAS  Google Scholar 

  25. S.D. Mo and W.Y. Ching: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys. Rev. B 51, 13023 (1995).

    Article  CAS  Google Scholar 

  26. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, and J.V. Smith: Structural electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 (1987).

    Article  CAS  Google Scholar 

  27. Y. Yang, D.J. Miller, and S.B. Hawthorne: Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J. Chem. Eng. Data 42, 908 (1997).

    Article  CAS  Google Scholar 

  28. J. Livage and C. Sanchez: Sol-gel chemistry. J. Non-Cryst. Solids 145, 11 (1992).

    Article  CAS  Google Scholar 

  29. Remington: The Science and Practice of Pharmacy (Philadelphia: Lippincott Williams & Wilkins, 2005).

    Google Scholar 

  30. R.P. Netterfield, P.J. Martin, C.G. Pacey, W.G. Sainty, D.R. Mckenzie, and G. Auchterlonie: Ion-assisted deposition of mixed TiO2–SiO2 films. J. Appl. Phys. 66, 1805 (1989).

    Article  CAS  Google Scholar 

  31. J.L.G. Fierro, L.A. Arrua, J.M.L. Nieto, and G. Kremenic: Surface properties of Co-precipitated V–Ti–O catalysts and their relation to the selective oxidation of isobutene. Appl. Catal. 37, 323 (1988).

    Article  CAS  Google Scholar 

  32. T. Siemens Meyer and J.W. Schultze: XPS and UPS studies of gas-phase oxidation, electrochemistry and corrosion behavior of Ti and Ti5Ta. Surf. Interface Anal. 16, 309 (1990).

    Article  CAS  Google Scholar 

  33. S.F. Ho, S. Contarini, and J.W. Rabalais: Ion-beam induced chemical changes in oxyanions (Moyn) and oxides (Max) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J. Phys. Chem. 91, 4779 (1987).

    Article  CAS  Google Scholar 

  34. L. Granasy, T. Pusztai, G. Tegze, J.A. Warren, and J.F. Douglas: Growth and form of spherulites. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 72, 011605 (2005).

    Article  Google Scholar 

  35. H.D. Keith and F.J. Padden: A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 34, 2409 (1963).

    Article  CAS  Google Scholar 

  36. L. Shen, N. Bao, Y. Zheng, A. Gupta, T. An, and K. Yanagisawa: Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. J. Phys. Chem. C 112, 8809 (2008).

    Article  CAS  Google Scholar 

  37. C. Sanchez, J. Livage, M. Henry, and F. Babonneau: Chemical modification of alkoxide precursors. J. Non-Cryst. Solids 100, 65 (1988).

    Article  CAS  Google Scholar 

  38. B. Ma, G.K.L. Goh, J. Ma, and T.J. White: Growth kinetics and cracking of liquid-phase-deposited anatase films. J. Electrochem. Soc. 154 (10), 557 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kisailus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arab, S., Li, D., Zaera, F. et al. Solvothermal synthesis of a highly branched Ta-doped TiO2. Journal of Materials Research 26, 2653–2659 (2011). https://doi.org/10.1557/jmr.2011.286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.286

Navigation