Influence of laser surface melting on glass formation and tribological behaviors of Zr55Al10Ni5Cu30 alloy


A gradient structure was synthesized on the surface of Zr55Al10Ni5Cu30 alloy with high glass-forming ability by laser surface melting (LSM). Along the laser incident direction, the surface remelted alloy exhibits gradient micro structure distributed in the sequence of amorphous structure, nanocrystal- reinforced amorphous matrix composite (transitional layer A), dendrites-amorphous phase composite (transitional layer B), and crystalline phases from the top surface to the substrate. The formation mechanism of this gradient structure is discussed based on the experimental results of the microstructure together with the finite volume simulation of the process of LSM treatment. The friction coefficient of the transitional layer A is ~2.5 times lower than those of the other layers under the same sliding friction condition, and possible reasons for this phenomenon are discussed in connection with the rolling motion and material transfer mechanism. The transitional layer B exhibits the best wear resistance among all the structures studied here, which is related to the optimized ratio of microhardness to reduced Young’s modulus (H/Er).

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.


  1. 1.

    A.L. Greer: Metallic glass. Science 267, 1947 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    A. Peter and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  3. 3.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    T. Zhang, A. Inoue, and T. Masumoto: Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    T. Zhang and H. Men: Plastic deformability and precipitation of nanocrystallites during compression for a Cu–Zr–Ti–Sn bulk metallic glass. J. Alloy. Comp. 10–, 434 (2007).

    Google Scholar 

  6. 6.

    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    A.R. Yavari, J.J. Lewandowski, and J. Eckert: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    A. Inoue and N. Nishiyama: Applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    G. Kumar, H.X. Tang, and J. Schroers: Nanomoulding with amorphous metals. Nature 457, 868 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    B. Zberg, P.J. Uggowitzer, and J.F. Löffler: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    F. Audebert, R. Colaco, R. Vilar, and H. Sirkin: Production of glassy metallic layers by laser surface treatment. Scr. Mater. 48, 281 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    A. Inoue: Bulk Amorphous Alloys (Trans Tech Publications, Zurich, 1998), p. 27.

    Google Scholar 

  13. 13.

    X. Wu, B. Xu, and Y. Hong: Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding. Mater. Lett. 56, 838 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    T.M. Yue, Y.P. Su, and H.O. Yang: Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Mater. Lett. 61, 209 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    S-W. Jiang, B. Jiang, Y. Li, Y-R. Li, G-F. Yin, and C-Q. Zheng: Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition. Appl. Surf. Sci. 236, 285 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    X.Y. Fu, T. Kasai, M.L. Falk, and D.A. Rigney: Sliding behavior of metallic glass-part I: Experimental investigations. Wear 250, 409 (2001).

    Article  Google Scholar 

  17. 17.

    Z. Parlar, M. Bakkal, and A.J. Shih: Sliding tribological characteristics of Zr-based bulk metallic glass. Intermetallics 16, 34 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    P.J. Blau: Friction and wear of a Zr-based amorphous metal alloy under dry and lubricated conditions. Wear 250, 431 (2001).

    Article  Google Scholar 

  19. 19.

    D.T.A. Matthews, V. Ocelík, and J.Th.M. de Hosson: Tribological and mechanical properties of high power laser surface-treated metallic glasses. Mater. Sci. Eng., A 471, 155 (2007).

    Article  CAS  Google Scholar 

  20. 20.

    D.T.A. Matthews, V. Ocelík, and J.Th.M. de Hosson: Scratch test induced shear banding in high power laser remelted metallic glass layers. J. Mater. Res. 22, 460 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    E. Fleury, S.M. Lee, H.S. Ahn, W.T. Kim, and D.H. Kim: Tribological properties of bulk metallic glasses. Mater. Sci. Eng., A 375–, 276 (2004).

    Article  CAS  Google Scholar 

  22. 22.

    A.R. Yavari, A. Le Moulec, W.J. Botta F., A. Inoue, P. Rejmankova, and A. Kvick: In situ crystallization of Zr55Cu30Al10Ni5 bulk glass forming from the glassy and undercooled liquid states using synchrotron radiation. J. Non-Cryst. Solids 247, 31 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    N.H. Tariq, B.A. Hasan, and J.I. Akhter: Evolution of microstructure in Zr55Cu30Al10Ni5 bulk amorphous alloy by high power pulsed Nd:YAG laser. J. Alloy. Comp. 485, 212 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    P. Li, J.Y. Hao, J.L. Tan, and Q. Wang: Influence of annealing on the elastic properties and microstructure of Cu58.1Zr35.9Al6 bulk metallic glass. Mater. Sci. Eng., A 527, 3416 (2010).

    Article  CAS  Google Scholar 

  25. 25.

    L. Wang, X. Nie, J. Housden, E. Spain, J.C. Jiang, E.I. Meletis, A. Leyland, and A. Mattews: Material transfer phenomena and failure mechanisms of a nanostructured Cr-Al-N coating in laboratory wear tests and an industrial punch tool application. Surf. Coat. Tech. 203, 816 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    J.H. Kim, C. Lee, D.M. Lee, J.H. Sun, S.Y. Shin, and J.C. Bae: Pulsed Nd: YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass. Mater. Sci. Eng., A 449–, 872 (2007).

    Article  CAS  Google Scholar 

  27. 27.

    B. Li, Z.Y. Li, J.G. Xiong, L. Xing, D. Wang, and Y. Li: Laser welding of Zr45Cu48Al7 bulk glassy alloy. J. Alloy. Comp. 413, 118 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    A. Basu, A.N. Samant, S.P. Harimkar, J. Dutta Majumdar, I. Manna, and N.B. Dahotre: Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel. Surf. Coat. Tech. 202, 2623 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Y.P. Lei, H. Murakawa, Y.W. Shi, and X.Y. Li: Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting. Comput. Mater. Sci. 21, 276 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    Q.S. Zhang, D.Y. Guo, A.M. Wang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Preparation of bulk Zr55Al10Ni5Cu30 metallic glass ring by centrifugal casting method. Intermetallics 10, 1197 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    M. Yamasaki, S. Kagao, and Y. Kawamura: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scr. Mater. 53, 63 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    C.C. Aydiner, E. Üstündag, M.B. Prime, and A. Peker: Modeling and measurement of residual stresses in a bulk metallic glass plate. J. Non-Cryst. Solids 316, 82 (2003).

    Article  Google Scholar 

  33. 33.

    J. Zappel and F. Sommer: Heat capacity and non-isothermal viscous flow of Al7.5Cu17.5Ni10Zr65 glassy alloy in the glass transition range. J. Non-Cryst. Solids 205–, 494 (1996).

    Article  Google Scholar 

  34. 34.

    J. Luo, H.P. Duan, C.L. Ma, S.J. Pang, and T. Zhang: Effects of yttrium and erbium additions on glass-forming ability and mechanical properties of bulk glassy Zr-Al-Ni-Cu alloys. Mater. Trans. JIM 47, 450 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    J. Kim, D. Lee, S. Shin, and C. Lee: Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd:YAG laser weld. Mater. Sci. Eng., A 434, 194 (2006).

    Article  CAS  Google Scholar 

  36. 36.

    D.R. Maddala, A. Mubarok, and R.J. Hebert: Sliding wear behavior of Cu50Hf41.5Al8.5 bulk metallic glass. Wear 269, 572 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    J. Bhatt, S. Kumar, C. Dong, and B.S. Murty: Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass. Mater. Sci. Eng., A 458, 290 (2007).

    Article  CAS  Google Scholar 

  38. 38.

    S.G. Vilt, N. Martin, C. McCabe, and G.K. Jennings: Frictional performance of silica microspheres. Tribol. Int. 44, 180 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    O.M. Braun and E. Tosatti: Molecular rolling friction: The cogwheel model. J. Phys. Condens. Matter 20, 354007 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    Y. Liu, Y.T. Zhu, X.K. Luo, and Z.M. Liu: Wear behavior of a Zr-based bulk metallic glass and its composites. J. Alloy. Comp. 503, 138 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    C. Donnet, M. Belin, J.C. Auge, J.M. Martin, A. Grill, and V. Patel: Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Tech. 68–, 626 (1994).

    Article  Google Scholar 

  42. 42.

    Y.T. Pei, D. Galvan, and J.Th.M. De Hosson: Nanostructure and properties of TiC/aC: H composite coatings. Acta Mater. 53, 4505 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    A. Hernandez Battez, J.L. Viesca, R. Gonzalez, D. Blanco, E. Asedegbega, and A. Osorio: Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear 268, 325 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    A. Hernandez Battez, R. Gonzalez, J.L. Viesca, J.E. Fernandez, J.M. Diaz Fernandez, A. Machado, R. Chou, and J. Riba: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    A. Leyland and A. Matthews: On the significance of the H/E ration in wear control: A nanocomposite coating approach to optimized tribological behaviour. Wear 246, 1 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    A. Leyland and A. Matthews: Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surf. Coat. Tech. 177–, 317 (2004).

    Article  CAS  Google Scholar 

Download references


This work was financially supported by the National Basic Research Program of China (2007CB613900), the National Nature Science Foundation of China (50771005 and 50771006), and Program for New Century Excellent Talents in University (NCET-07-0041). We also acknowledge the contributions of Dr. D.V. Dudina for her helpful discussion and Mr. H.H. Song for his kind assistance in SEM observations.

Author information



Corresponding author

Correspondence to Bingqing Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, B., Li, Y., Li, R. et al. Influence of laser surface melting on glass formation and tribological behaviors of Zr55Al10Ni5Cu30 alloy. Journal of Materials Research 26, 2642–2652 (2011).

Download citation