Abstract
Systematic nanoindentation experiments have been carried out to study the mechanical properties of a nanocrystalline Fe–51Ni coating exhibiting anelastic and creep characteristics. An analytical method based on the correspondence principle for linear viscoelasticity was developed. The holding displacement–time data obtained in indentation creep tests at a high loading rate of 20 mN/s were analyzed, and material parameters related to the elastic, anelastic, and creep characteristics were derived using a model containing one Maxwell unit and two Kelvin units. The anelastic deformation thus contains at least two relaxation processes having relaxation times of 0.37 and 6.8 s, respectively, and the creep deformation is described by a viscosity value of 4.2 × 104 GPa·s for the alloy in an as-deposited state. The anelastic and creep characteristics descend associated with increases of the elastic modulus and hardness values after the alloy was annealed at 673 K.
This is a preview of subscription content, access via your institution.












References
- 1.
D. Pan, T.G. Nieh, and M.W. Chen: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).
- 2.
R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).
- 3.
C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).
- 4.
B. Yang and H. Vehoff: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).
- 5.
G.J. Fan, W.H. Jiang, F.X. Liu, H. Choo, P.K. Liaw, B. Yang, L.F. Fu, and N.D. Browning: The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation. J. Mater. Res. 22, 1235 (2007).
- 6.
F. Sansoz and V. Dupont: Atomic mechanism of shear localization during indentation of a nanostructured metal. Mater. Sci. Eng., C 27, 1509 (2007).
- 7.
J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).
- 8.
D. Pan and M.W. Chen: Rate-change instrumented indentation for measuring strain rate sensitivity. J. Mater. Res. 24, 1466 (2009).
- 9.
W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
- 10.
B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).
- 11.
Y.T. Cheng: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 (2001).
- 12.
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
- 13.
M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).
- 14.
A.H.W Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).
- 15.
N. Fujisawa and M.V. Swain: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).
- 16.
G. Feng and A.H.W Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).
- 17.
Z. Ma, S. Long, Y. Pan, and Y. Zhou: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).
- 18.
T. Chudoba and F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Tech. 148, 191 (2001).
- 19.
S. Sakai, H. Tanimoto, E. Kita, and H. Mizubayashi: Characteristic creep behavior of nanocrystalline metals found for high-density gold. Phys. Rev. B 66, 214106 (2002).
- 20.
H. Tanimoto, S. Sakai, and H. Mizubayashi: Anelasticity study on motions of atoms in the grain boundary regions in nanocrystalline gold. Mater. Trans. 44, 53 (2003).
- 21.
J. Lohmiller, C. Eberl, R. Schwaiger, O. Kraft, and T.J. Balk: Mechanical spectroscopy of nanocrystalline nickel near room temperature. Scr. Mater. 59, 467 (2008).
- 22.
M.L. Oyen: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 (2007).
- 23.
C.K. Liu, S. Lee, L.P. Sung, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 033503 (2006).
- 24.
H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).
- 25.
M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).
- 26.
S. Yang, Y.W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).
- 27.
W.N. Findley, J.S. Lai, and K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials (North-Holland, New York, 1976), p. 71.
- 28.
E. Bonetti, E.G. Campari, L.D. Bianco, L. Pasquini, and E. Sampaolesi: Mechanical behaviour of nanocrystalline iron and nickel ln the quasi-static and low frequency anelastic regime. Nanostruct. Mater. 11, 709 (1999).
- 29.
H.H. Fu, D.J. Benson, and M.A. Meyers: Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 49, 2567 (2001).
- 30.
E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Ltd, Oxford, United Kingdom, 1998), pp. 13–117.
- 31.
Y.S. Kang, J.S. Lee, S.V. Divinski, and Chr. Herzig: Ni grain boundary diffusion in coarse-grained Fe-40 wt.% Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy. Z. Metallkd. 95, 76 (2004).
- 32.
G.P. Renaud and S.G. Steinemann: High temperature elastic constants of Fe-Ni invar alloys, in Physical Metallurgy of Controlled Expansion Invar-Type Alloys, edited by K.C. Russell, D.F. Smith (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 225.
- 33.
X. Huang, N. Hansen, and N. Tsuji: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).
- 34.
L. Chang, P.W. Kao, and C.H. Chen: Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).
Acknowledgments
This work was financially supported by the National Science Council under NSC-95-2221-E-110-031 and the Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yi, LH., Lee, CY., Chang, L. et al. Analyzing mechanical properties of a nanocrystalline Fe–Ni coating by nanoindentation. Journal of Materials Research 26, 2533–2542 (2011). https://doi.org/10.1557/jmr.2011.276
Received:
Accepted:
Published:
Issue Date: