Analyzing mechanical properties of a nanocrystalline Fe–Ni coating by nanoindentation

Abstract

Systematic nanoindentation experiments have been carried out to study the mechanical properties of a nanocrystalline Fe–51Ni coating exhibiting anelastic and creep characteristics. An analytical method based on the correspondence principle for linear viscoelasticity was developed. The holding displacement–time data obtained in indentation creep tests at a high loading rate of 20 mN/s were analyzed, and material parameters related to the elastic, anelastic, and creep characteristics were derived using a model containing one Maxwell unit and two Kelvin units. The anelastic deformation thus contains at least two relaxation processes having relaxation times of 0.37 and 6.8 s, respectively, and the creep deformation is described by a viscosity value of 4.2 × 104 GPa·s for the alloy in an as-deposited state. The anelastic and creep characteristics descend associated with increases of the elastic modulus and hardness values after the alloy was annealed at 673 K.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Table I
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    D. Pan, T.G. Nieh, and M.W. Chen: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).

    Article  Google Scholar 

  2. 2.

    R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    B. Yang and H. Vehoff: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    G.J. Fan, W.H. Jiang, F.X. Liu, H. Choo, P.K. Liaw, B. Yang, L.F. Fu, and N.D. Browning: The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation. J. Mater. Res. 22, 1235 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    F. Sansoz and V. Dupont: Atomic mechanism of shear localization during indentation of a nanostructured metal. Mater. Sci. Eng., C 27, 1509 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    D. Pan and M.W. Chen: Rate-change instrumented indentation for measuring strain rate sensitivity. J. Mater. Res. 24, 1466 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  10. 10.

    B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Y.T. Cheng: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    A.H.W Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    N. Fujisawa and M.V. Swain: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    G. Feng and A.H.W Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Z. Ma, S. Long, Y. Pan, and Y. Zhou: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    T. Chudoba and F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Tech. 148, 191 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    S. Sakai, H. Tanimoto, E. Kita, and H. Mizubayashi: Characteristic creep behavior of nanocrystalline metals found for high-density gold. Phys. Rev. B 66, 214106 (2002).

    Article  Google Scholar 

  20. 20.

    H. Tanimoto, S. Sakai, and H. Mizubayashi: Anelasticity study on motions of atoms in the grain boundary regions in nanocrystalline gold. Mater. Trans. 44, 53 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    J. Lohmiller, C. Eberl, R. Schwaiger, O. Kraft, and T.J. Balk: Mechanical spectroscopy of nanocrystalline nickel near room temperature. Scr. Mater. 59, 467 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    M.L. Oyen: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    C.K. Liu, S. Lee, L.P. Sung, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 033503 (2006).

    Article  Google Scholar 

  24. 24.

    H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  25. 25.

    M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    S. Yang, Y.W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    W.N. Findley, J.S. Lai, and K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials (North-Holland, New York, 1976), p. 71.

    Google Scholar 

  28. 28.

    E. Bonetti, E.G. Campari, L.D. Bianco, L. Pasquini, and E. Sampaolesi: Mechanical behaviour of nanocrystalline iron and nickel ln the quasi-static and low frequency anelastic regime. Nanostruct. Mater. 11, 709 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    H.H. Fu, D.J. Benson, and M.A. Meyers: Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 49, 2567 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Ltd, Oxford, United Kingdom, 1998), pp. 13–117.

    Google Scholar 

  31. 31.

    Y.S. Kang, J.S. Lee, S.V. Divinski, and Chr. Herzig: Ni grain boundary diffusion in coarse-grained Fe-40 wt.% Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy. Z. Metallkd. 95, 76 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    G.P. Renaud and S.G. Steinemann: High temperature elastic constants of Fe-Ni invar alloys, in Physical Metallurgy of Controlled Expansion Invar-Type Alloys, edited by K.C. Russell, D.F. Smith (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 225.

  33. 33.

    X. Huang, N. Hansen, and N. Tsuji: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    L. Chang, P.W. Kao, and C.H. Chen: Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council under NSC-95-2221-E-110-031 and the Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liuwen Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yi, LH., Lee, CY., Chang, L. et al. Analyzing mechanical properties of a nanocrystalline Fe–Ni coating by nanoindentation. Journal of Materials Research 26, 2533–2542 (2011). https://doi.org/10.1557/jmr.2011.276

Download citation