Scratch resistance of Al/SiC metal/ceramic nanolaminates

Abstract

Al/SiC nanolaminates have been shown to possess excellent combination of mechanical strength and flexibility. While metal–ceramic multilayers present a tremendous opportunity for hard coatings, the strength evaluation is usually carried out under static loading conditions such as nanoindentation and microcompression testing. In this study, we have studied the scratch resistance behavior of Al/SiC nanolaminates. These properties are then compared to monolithic films of Al and SiC. Finally, the deformation behavior under such loading was quantified by critical load, work of deformation, and postexperimental microstructural analysis by scanning electron microscopy and focused ion beam cross sections. It is shown that the combination of hard SiC and plastic Al layers provides enhanced resistance to scratch loading and makes these materials as very good candidates for wear-resistant coatings.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

References

  1. 1.

    T.Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias: Multilevel charge storage in silicon nanocrystal multilayers. Appl. Phys. Lett. 87, 202110 (2005).

    Article  Google Scholar 

  2. 2.

    A.L. Lima, X. Zhang, A. Misra, C.H. Booth, E.D. Bauer, and M.F. Hundley: Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers. Thin Solid Films 515, 3574 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    S. Promnimit, S.H.M. Jafri, D. Sweatman, and J. Dutta: Conduction properties of layer-by-layer self-assembled multilayer nanoparticulate structures. J. Nanoelectron. Optoelectron. 3, 184 (2008).

    Article  Google Scholar 

  4. 4.

    M. Albrecht, G. Hu, I.L. Guhr, T.C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz: Magnetic multilayers on nanospheres. Nat. Mater. 4, 203 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    X. Wang, H. Masumoto, Y. Someno, and T. Hirai: Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles. Appl. Phys. Lett. 72, 3264 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    J. Hiltunen, D. Seneviratne, R. Sun, M. Stolfi, H.L. Tuller, J. Lappalainen, and V. Lantto: BaTiO3–SrTiO3 multilayer thin film electro-optic waveguide modulator. Appl. Phys. Lett. 89, 242904 (2006).

    Article  Google Scholar 

  7. 7.

    S. PalDey and S.C. Deevi: Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng., A 342, 58 (2003).

    Article  Google Scholar 

  8. 8.

    A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    Y.C. Wang, A. Misra, and R.G. Hoagland: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Z.H. Xie, M. Hoffman, P. Munroe, R. Singh, A. Bendavid, and P.J. Martin: Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. J. Mater. Res. 22, 2312 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    S. Graça, R. Colaço, and R. Vilar: Micro-to-nano indentation and scratch hardness in the Ni-Co system: Depth dependence and implications for tribological behavior. Tribol. Lett. 31, 177 (2008).

    Article  Google Scholar 

  12. 12.

    E. Martínez, J. Romero, A. Lousa, and J. Esteve: Wear behavior of nanometric CrN/Cr multilayers. Surf. Coat. Tech. 163, 571 (2003).

    Article  Google Scholar 

  13. 13.

    T. Mori, S. Fukuda, and Y. Takemura: Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surf. Coat. Tech. 140, 122 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    X. Lu, B. Shi, L.K.Y. Li, J. Luo, and J. Mou: Nanoindentation and nanotribological behavior of Fe-N/Ti-N multilayers with different thickness of Fe-N layers. Wear 247, 15 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    S.P. Wen, R.L. Zong, F. Zeng, S. Guo, and F. Pan: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255(8), 4558 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    P.C. Wo, P.R. Munroe, Z. Xie, Z. Zhou, and K.Y. Li: Three-dimensional visualization of scratch-induced subsurface damage in TiSiN/TiN multilayer coating using focused ion beam-scanning electron microscopic tomography technique. J. Am. Ceram. Soc. 94(5), 1598 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    A. Vyas, K.Y. Li, and Y.G. Shen: Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films. Surf. Coat. Tech. 203(8), 967 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    N. Chawla and D.R.P. Singh: Three dimensional (3D) visualization of damage in metal-ceramic nanolayers by focused ion beam (FIB) serial sectioning. Microsc. Microanal. 14, 140 (2008).

    Article  Google Scholar 

  19. 19.

    N. Chawla, D.R. Singh, Y.L. Shen, G. Tang, and K.K. Chawla: Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J. Mater. Sci. 43, 4383 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    X. Deng, N. Chawla, K.K. Chawla, M. Koopman, and J.P. Chu: Mechanical behavior of multilayered nanoscale metal-ceramic composites. Adv. Eng. Mater. 7, 1099 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    X. Deng, C. Cleveland, N. Chawla, T. Karcher, M. Koopman, and K.K. Chawla: Nanoindentation behavior of nanolayered metal-ceramic composites. J. Mater. Eng. Perform. 14, 417 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    D.R.P. Singh, N. Chawla, G. Tang, and Y-L. Shen: Micropillar compression of Al/SiC nanolaminates. Acta Mater. 58, 6628 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra: A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites. Philos. Mag. 90, (13), 1711 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Han, M.A. Phillips, and W.D. Nix: Study of strain softening behavior of Al-Al3Sc multilayers using microcompression testing. Acta Mater. 57(15), 4473 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    S.J. Bull and E.G. Berasetegui: An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 39, 99 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    M. Larsson, M. Olsson, P. Hedenqvist, and S. Hogmark: Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS. Surf. Eng. 16, 436 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    S.D. McAdams, T.Y. Tsui, G.M. Pharr, and W.C. Oliver: Effects of interlayers in the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and P. Børgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 809.

    CAS  Google Scholar 

  30. 30.

    P. Bertrand-Lambotte, J.L. Loubet, C. Verpy, and S. Pavan: Understanding of automotive clearcoats scratch resistance. Thin Solid Films 420, 281 (2002).

    Article  Google Scholar 

  31. 31.

    A. Karimi, Y. Wang, T. Cselle, and M. Morstein: Fracture mechanisms in nanoscale layered hard thin films. Thin Solid Films 420, 275 (2002).

    Article  Google Scholar 

  32. 32.

    B.J. Briscoe, E. Pelillo, and S.K. Sinha: Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym. Eng. Sci. 36, 2996 (1996).

    Article  Google Scholar 

  33. 33.

    V.D. Jardret and W.C. Oliver: Viscoelastic behavior of polymer films during scratch test: A quantitative analysis, in Thin Films–Stresses and Mechanical Properties VIII, edited by R. Vinci, O. Kraft, N. Moody, P. Besser, and E. Shaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 251.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support for this research from the National Science Foundation (DMR-0504781, Drs. A. Ardell, H.D. Chopra, and B.A. MacDonald, Program Managers). We also acknowledge the use of characterization facilities at the Center for Solid State Science at Arizona State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, D.R., Chawla, N. Scratch resistance of Al/SiC metal/ceramic nanolaminates. Journal of Materials Research 27, 278–283 (2012). https://doi.org/10.1557/jmr.2011.274

Download citation