Luminescence enhancement of Eu3+-activated La2Mo2O9 red-emitting phosphor through chemical substitution

Abstract

A series of red-emitting phosphors with compositions of La2(Mo1−zSiz)2O9:0.05Eu3+ (0 ≤ z ≤ 0.10) with strong near-UV absorption were prepared by solid-state method. The structure and luminescence properties were investigated by x-ray powder diffraction, UV–vis diffuse reflectivity, and photoluminescence spectra. The luminescent properties as a function of Si4+ concentrations were systematically studied. Under excitation of a wide range near-UV (250–430 nm) or blue light, Si4+-doped series phosphors exhibit characteristic red emission of Eu3+ peaked at 615 nm. The incorporation of Si4+ into La2Mo2O9:0.05Eu3+ phosphor leads to the improvement of the excitation broad band and sharp peaks, as well as the broadening of charge transfer band. Appropriate amount of Si4+ doping can enhance the red luminescence intensity. Finally, the possible reasons for the luminescence enhancement via the corporation of Si4+ were explained.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

References

  1. 1.

    E.F. Schubert and J.K. Kim: Solid-state light sources getting smart. Science 308, 1274 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    H.A. Höppe: Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572 (2009).

    Article  Google Scholar 

  3. 3.

    A.A. Setlur: Phosphors for LED-based solid-state lighting. Electrochem. Soc. Interface 18, 32 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R.M. Mach, G.O. Mueller, Y. Ohno, L.E.S Rohwer, J.A. Simmons, and J.Y. Tsao: Research challenges to ultra-efficient inorganic solid-state lighting. Laser & Photon Rev. 1, 307 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    T. Hashimoto, F. Wu, J.S. Speck, and S. Nakamura: A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    S. Neeraj, N. Kijima, and A.K. Cheetham: Novel red phosphors for solid-state lighting: The system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett. 387, 2 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    S. Neeraj, N. Kijima, and A.K. Cheetham: Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+ (Ln = Y, Gd). Solid State Commun. 131, 65 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    M. Nyman, M.A. Rodriguez, L.E. Shea-Rohwer, J.E. Martin, and P.P. Provencio: Highly versatile rare earth tantalate pyrochlore nanophosphors. J. Am. Chem. Soc. 131, 11652 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    G. Pan, H. Song, Q. Dai, R. Qin, X. Bai, B. Dong, L. Fan, and F. Wang: Microstructure and optical properties of Eu3+ activated YV1-xPxO4 phosphors. J. Appl. Phys. 104, 084910 (2008).

    Article  Google Scholar 

  10. 10.

    F. Wang, X. Xue, and X. Liu: Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Ci, Y. Wang, J. Zhang, and Y. Sun: Ca1-xMo1-ySiyO4:Eux3+: A novel red phosphor for white light emitting diodes. Physica B 403, 607 (2008).

    Article  Google Scholar 

  12. 12.

    A. Xie, X. Yuan, S. Hai, J. Wang, F. Wang, and L. Li: Enhancement emission intensity of CaMoO4:Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs. J. Phys. D: Appl. Phys. 42, 105107 (2009).

    Article  Google Scholar 

  13. 13.

    P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, and Y. Laligant: Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404, 856 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    G. Corbel, Y. Laligant, F. Goutenoire, E. Suard, and P. Lacorre: Effects of partial substitution of Mo6+ by Cr6+ and W6+ on the crystal structure of the fast oxide-ion conductor structural effects of W6+. Chem. Mater. 17, 4678 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    T. Kim and S. Kang: Potential red phosphor for UV-white LED device. J. Lumin. 122–, 964 (2007).

    Article  Google Scholar 

  16. 16.

    D. Marrero-López, P. Núñez, M. Abril, V. Lavín, U.R. Rodríguez-Mendoza, and V.D. Rodríguez: Synthesis, electrical properties, and optical characterization of Eu3+-doped La2Mo2O9 nanocrystalline phosphors. J. Non-Cryst. Solids 345–, 377 (2004).

    Article  Google Scholar 

  17. 17.

    X. Li, Z. Yang, L. Guan, C. Liu, and P. Li: Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method. J. Cryst. Growth 310, 3117 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    H. Gong, S. Shi, and J. Zhou: Enhanced red luminescence of Eu3+ and R3+ -doped La2Mo2O9 phosphors under blue light excitation. Curr. Appl. Phys. 11, 551 (2011).

    Article  Google Scholar 

  19. 19.

    M. Nazarov: Luminescence mechanism of highly efficient YAG and TAG phosphors. Moldavian J. Phys. Sci. 4, 347 (2005).

    Google Scholar 

  20. 20.

    W.E. Hank, P.W. Barnes, M.A. Benjamin, and M.W. Patrick: Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 175, 94 (2003).

    Article  Google Scholar 

  21. 21.

    P. Dai, X. Zhang, X. Li, G. Wang, C. Zhao, and Y. Liu: Red-emitting LiEuMo2-xSixO8 phosphors for white light-emitting diodes. J. Lumin. 131, 653 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    H. Ryu, B.K. Singh, K.S. Bartwal, M.G. Brik, and I.V. Kityk: Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3:Pr3+. Acta Mater. 56, 358 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Yu, D. Chen, Y. Wang, P. Huang, F. Weng, and M. Niu: Enhanced photoluminescence of Eu3+ induced by energy transfer from In2O3 nano-crystals embedded in glassy matrix. Phys. Chem. Chem. Phys. 11, 8774 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    W. Wang, C. Jiang, M. Shen, L. Fang, F. Zheng, X. Wu, and J. Shen: Effect of oxygen vacancies on the red emission of SrTiO3:Pr3+ phosphor films. Appl. Phys. Lett. 94, 081904 (2009).

    Article  Google Scholar 

  25. 25.

    S. Kubota, H. Hara, H. Yamane, and M. Shimada: Luminescence property of Eu3+ in a newly compound, (Sr0.99La1.01)Zn0.99O3.495. J. Electrochem. Soc. 149, H68 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianghong He.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, X., Guan, M., Zhang, C. et al. Luminescence enhancement of Eu3+-activated La2Mo2O9 red-emitting phosphor through chemical substitution. Journal of Materials Research 26, 2379–2383 (2011). https://doi.org/10.1557/jmr.2011.269

Download citation