An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor


ZnS:Cu,Cl,Mn,Te, which shows red AC powder electroluminescence (ACPEL) emission, was synthesized using a conventional wet synthesis and a sealed vessel method. The photoluminescence (PL) and ACPEL were characterized. After the second firing, 0.5 wt% tellurium (Te)-doped ZnS:Cu,Cl,Mn,Te phosphor shows almost red PL emission from the 4T16A1 transition of Mn2+ ions, which are affected by the Te. Extended x-ray absorption fine structure analysis on the Mn K edge proved that the substitution of sulfur (S) with Te changes the local crystal field of the Mn2+ ions and shifts an orange emission (∼588 nm) to a red emission (∼650 nm). A red ACPEL emission is first shown in 0.5 wt%Te-doped ZnS:Cu,Cl,Mn,Te after the third firing phosphor even though its luminance is not very high. The origin of the ACPEL emission is assumed to be not a CuxS–ZnS p–n junction but a CuxTe–ZnS p–n junction. Raman spectra were characterized to support that the red ACPEL emission is probably attributed to a CuxTe–ZnS p–n junction.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.


  1. 1.

    K. Neyts: Numerical simulation of charge transfer and light emission in SrS:Ce thin-film electroluminescent devices. IEEE Trans. Electron. Dev. 43, 1343 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    A.G. Fisher: Electroluminescent lines in ZnS powder particles. J. Electrochem. Soc. 110, 733 (1963).

    Article  Google Scholar 

  3. 3.

    J.H. Park, S.H. Lee, J.S. Kim, A.K. Kwon, H.L. Park, and S.D. Han: White-electroluminescent device with ZnS:Mn, Cu, Cl phosphor. J. Lumin. 126, 566 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    I.W. Park, J.H. Kim, J.S. Yoo, H.H. Shin, C.K. Kim, and C.K. Choi: Longevity improvement of CaS:Eu phosphor using polymer binder coating for white LED application. J. Electrochem. Soc. 155, J132 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    C.L. Lo, J.G. Duh, and B.S. Chiou: Low-voltage cathodoluminescence properties of the Y2O2S:Eu red light emitting phosphor screen in field-emission environments. J. Electrochem. Soc. 149, H129 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    V.A. Krasnoperov and G.F. Pron: The effect of tellurium on the photoluminescence quantum yield of ZnS-Mn luminophors. J. Appl. Spectrosc. 9, 1277 (1972).

    Google Scholar 

  7. 7.

    P. Xianqing, H. Takashi, H. Hiromasa, and M. Ken-Ichi: Photoluminescence properties of Ca2Si5N8:Eu+ nitride phosphor prepared by carbothermal reduction and nitridation method. Chem. Lett. 35, 334 (2006).

    Article  Google Scholar 

  8. 8.

    P. Benalloul, J. Benoit, A. Geoffroy, D. Yebdri, R. Bilewicz, W. Busse, H.E. Gumlich, and R. Rebentisch: Thin film electroluminescence of Zn1−xMnxS1−yTey. J. Cryst. Growth 101, 976 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    B.J. Park, W.B. Im, W.J. Chung, H.S. Seo, J.T. Ahn, and D.Y. Jeon: Internal pressure effect on cathodoluminescence enhancement of ZnS:Mn2+ synthesized by a sealed vessel. J. Mater. Res. 22, 2838 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    R. Parrot, C. Naud, and F. Gendron: Structure of a 4T2 level of Mn++ in tetrahedral symmetry, dynamical Jahn-Teller effect and selective intensity transfer. Phys. Rev. B 13, 3748 (1976).

    CAS  Article  Google Scholar 

  11. 11.

    X. Zhang, H. Zeng, and Q. Su: Mn2+-doped Ba2ZnS3 phosphor as a potential luminescent material for white LEDs. J. Alloy. Comp. 441, 259 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Y.L. Soo, Z.H. Ming, S.W. Huang, and Y.H. Kao: Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. Phys. Rev. B 50, 7602 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi: Mn and Te K-edge EXAFS studies of Zn1-xMnxTe. Physica B 208–, 291 (1995).

    Article  Google Scholar 

  14. 14.

    F. Li and Y.H. Wang: Concentration effect of Mn2+ on the luminescence properties of Ba0.75Al11O17.25: Mn2+. Electrochem. Solid St. 9, J24 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    K.S. Sohn, E.S. Park, C.H. Kim, and H.D. Park: Photoluminescence behavior of BaAl12O19:Mn phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc. 147, 4368 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    R.I. Smirnova and G.F. Pron: Effect of tellurium on luminescence properties of zinc sulfide luminors. Opt. Spectrosc. 23, 67 (1967).

    Google Scholar 

  17. 17.

    B. Schreder and W. Kiefer: Handbook of Raman Spectroscopy (Dekker, New York, 2001).

    Google Scholar 

  18. 18.

    J. Schneider and R.D. Kirby: Raman scattering from ZnS polytypes. Phys. Rev. B 6, 1290 (1972).

    CAS  Article  Google Scholar 

  19. 19.

    O. Brafman and S.S. Mitra: Raman effect in wurtzite- and zinc-blende-type ZnS single crystals. Phys. Rev. 171, 931 (1968).

    CAS  Article  Google Scholar 

  20. 20.

    Y.T. Nien and I.G. Chen: Raman scattering and electroluminescence of ZnS:Cu,Cl phosphor powder. Appl. Phys. Lett. 89, 261906 (2006).

    Article  Google Scholar 

  21. 21.

    P.M. Amirtharaj and F.H. Pollak: Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl. Phys. Lett. 45, 789 (1984).

    CAS  Article  Google Scholar 

  22. 22.

    B. Minceva-Sukarovaa, M. Najdoskia, I. Grozdanova, and C.J. Chunnilall: Raman spectra of thin films of some metal sulfides. J. Mol. Struct. 410–, 267 (1997).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Duk Young Jeon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, B.J., Seo, H.S., Ahn, J.T. et al. An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor. Journal of Materials Research 26, 2394–2399 (2011).

Download citation