Influence of antimony trioxide nanoparticle doping on superconductivity in MgB2 bulk

Abstract

In this work, antimony trioxide (Sb2O3) has been doped into MgB2 samples to act as an additive. The doping level varies from 2.5 to 15 wt%. The effects of Sb2O3 addition on the lattice parameters, critical temperature (Tc), critical current density (Jc), and upper critical field (Hc2) have been investigated in detail. It has been found that Sb2O3 doping results in a small depression in Tc. The Jc value is 2.4 × 10 A·cm-1 for the 2.5% Sb2O3-doped sample at 5 K and 8 T, which is more than two times higher than for the undoped sample. The significant Jc improvement at high fields is attributed to the Hc2 enhancement caused by the increased disorder.

This is a preview of subscription content, access via your institution.

FIG. 1
TABLE I
FIG. 2
FIG. 3
FIG. 4
FIG. 5

References

  1. 1.

    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu: Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M. Polichetti, T.J. Tate, R. Gwilliam, and A.D. Caplin: Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation. Nature 411, 561 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, and M. Tomsic: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    J.M. Rowell: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16, R17 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Nans, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, and M. Haas: Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 410, 186 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S-C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki, and K. Kadowaki: The origin of multiple superconducting gaps in MgB2. Nature 423, 65 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    M. Kambara, N.H. Babu, E.S. Sadki, J.R. Cooper, H. Minami, D.A. Cardwell, A.M. Campbell, and I.H. Inoue: High intergranular critical currents in metallic MgB2 superconductor. Supercond. Sci. Technol. 14, L5 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu: Evidence for strong-coupling s-wave superconductivity in MgB2: 11B NMR study. Phys. Rev. Lett. 87, 127001 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    T. Takasaki, T. Ekino, T. Muranaka, H. Fujii, and J. Akimitsu: Multiple-gap structure of the binary superconductor MgB2. Physica C 388–, 147 (2003).

    Article  Google Scholar 

  10. 10.

    S.X. Dou, S. Soltanian, W.K. Yeoh, and Y. Zhang: Effect of nano-particle doping on the upper critical field and flux pinning in MgB2. IEEE Trans. Appl. Supercond. 15, 3219 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    H. Kumakura, H. Kitaguchi, A. Matsumoto, and H. Hatakeyama: Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors. Appl. Phys. Lett. 84, 3669 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    M.D. Sumption, M. Bhatia, S.X. Dou, M. Rindfleisch, M. Tomsic, L. Arda, M. Ozdemir, Y. Hascicek, and E.W. Collings: Irreversibility field and flux pinning in MgB2 with and without SiC additions. Supercond. Sci. Technol. 17, 1180 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, and K. Kishio: Doping effects on critical current properties of MgB2 bulks synthesized by modified powder-in-tube method. IEEE Trans. Appl. Supercond. 15, 3292 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen, L.D. Cooley, X. Song, and D.C. Larbalestier: High critical current density and improved irreversibility field in bulk MgB2 made by a scalable, nanoparticle addition route. Appl. Phys. Lett. 81, 2026 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    A. Matsumoto, H. Kumakura, H. Kitaguchi, and H. Hatakeyama: Effect of SiO2 and SiC doping on the powder-in-tube processed MgB2 tapes. Supercond. Sci. Technol. 16, 926 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    G.J. Xu, J.C. Grivel, A.B. Abrahamsen, and N.H. Andersen: Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition. Physica C 406, 95 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    M. Gharaibeh, B.A. Albiss, I. Jumah, and I.M. Obaidat: Effective incorporation of nanoceria into polycrystalline MgB2. J. Appl. Phys. 107, 063908 (2010).

    Article  Google Scholar 

  18. 18.

    C. Yao, X. Zhang, D. Wang, Z. Cao, L. Wang, Y. Qi, C. Wang, Y. Ma, S. Awaji, and K. Watanabe: Doping effects of Nd2O3 on the superconducting properties of powder-in-tube MgB2 tapes. Supercond. Sci. Technol. 24, 055016 (2011).

    Article  Google Scholar 

  19. 19.

    J. Jiang, B.J. Senkowicz, D.C. Larbalestier, and E.E. Hellstrom: Influence of boron powder purification on the connectivity of bulk MgB2. Supercond. Sci. Technol. 19, L33 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    X.Z. Liao, A.C. Serquis, Y.T. Zhu, J.Y. Huang, D.E. Peterson, F.M. Mueller, H.F. Xu: Controlling flux pinning precipitates during MgB2 synthesis. Appl. Phys. Lett. 80 (23), 4398 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    R.F. Klie, J.C. Idrobo, N.D. Browning, A. Serquis, Y.T. Zhu, X.Z. Liao, and F.M. Muelle: Observation of coherent oxide precipitates in polycrystalline MgB2. Appl. Phys. Lett. 80 (21), 3970 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    C.B. Eom, M.K. Lee, J.H. Choi, L.J. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, R.J. Cava: High critical current density and enhanced irreversibility field in superconducting MgB2 thin films. Nature 411, 558 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    C.H. Jiang, H. Hatakeyama, and H. Kumakura: Effect of nanometer MgO addition on the in situ PIT processed MgB2/Fe tapes. Physica C 423, 45 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    M. Eisterer: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20, R47 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    D. Dew-Hughes: Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293 (1974).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Silver, Dr. D. Attard, and Dr. X. Xu for their helpful discussions. This work was supported by the Australian Research Council, Hyper Tech Research Inc., and the University of Wollongong.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Dou, S.X. Influence of antimony trioxide nanoparticle doping on superconductivity in MgB2 bulk. Journal of Materials Research 26, 2701–2706 (2011). https://doi.org/10.1557/jmr.2011.255

Download citation