Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property

Abstract

The metal nanoparticles dispersed in matrices of composite material are able to apply in different technologies based on their peculiarity. This article reports the preparation of Ag/epoxy nanocomposite film with aligned Ag nanowires coated on glass substrate by multistep processing including synthesis of Ag nanowires by seed-mediated method, dispersion of Ag nanowires in the epoxy resin, and stretching to form the Ag/epoxy nanocomposite film. The results showed that Ag nanowires had been well aligned in the direction of stretching, both in the surface layer and in the internal of the film. Meanwhile, the Ag/epoxy nanocomposite film showed an obviously infrared polarization property in a broad wavelength range from 1600 to 2600 nm, with transmittance over 70%. The mechanisms for the orientation of Ag nanowires and the generation of polarization property of the films were discussed, respectively.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    K. Baba, K. Shiraishi, K. Obi, T. Kataoka, and S. Kawakami: Optical properties of very thin metal films for laminated polarizers. Appl. Opt. 27, 2554 (1988).

    CAS  Article  Google Scholar 

  2. 2.

    K. Shiraishi, H. Hatakeyama, N. Ishibashi, and K. Matsumura: Metal/semiconductor compound ultrathin films for laminated optical polarizers. Appl. Phys. Lett. 64, 957 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    J.P. Guo and D. Brady: Fabrication of thin film micropolarizer arrays for visible imaging polarimetry. Appl. Opt. 39, 1486 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    M. Saito, M. Kirihara, and T. Taniguchi: Micropolarizer made of the anodized alumina film. Appl. Phys. Lett. 55, 607 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    T.K. Sau, A.L. Rogach, F. Jackel, T.A. Klar, and J. Feldmann: Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    A. Moores and F. Goettmann: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. N. J. Chem. 30, 1121 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    C. Burda, X.B. Chen, R. Narayanan, and M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    M.L. Sandrock, C.D. Pibel, F.M. Geiger, and C.A. Foss Jr.: Synthesis and second-harmonic generation studies of noncentrosymmetric gold Nanostructures. J. Phys. Chem. B 103, 2668 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    T. Nikolajsen, K. Leosson, and S.I. Bozhevolyni: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T.A. Klar, J. Feldmann, A. Nichtl, and K. Kulrzinger: Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    Y.G. Sun and Y.N. Xia: Nanoparticles shape-controlled synthesis of gold and silver. Science 298, 2176 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    R.C. Jin, Y.C. Cao, E.C. Hao, G.S. Metraux, G.C. Schatz, and C.A. Mirkin: Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, and S.S. Xie: Synthesis, characterization and self-assembly of silver nanowires. Chem. Phys. Lett. 380, 146 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    K. Skinner, C. Dwyer, and S. Washburn: Selective functionalization of arbitrary nanowires. Nano Lett. 6, 2758 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    S.Y. Zhao, H. Roberge, A. Yelon, and T. Veres: New application of AAO template: A mold for nanoring and nanocone arrays. J. Am. Chem. Soc. 128, 12352 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, and T.E. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    S. Auvray, V. Derycke, M. Goffman, A. Filoramo, O. Jost, and J.P. Bourgoin: Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett. 5, 451 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    G.H. Yu, A.Y. Cao, and C.M. Lieber: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    D.C. Skillman and C.R. Berry: Effect of particle shape on the spectral absorption of colloidal silver in gelatin. J. Chem. Phys. 48, 3297 (1968).

    CAS  Article  Google Scholar 

  22. 22.

    D.G. Grossman, L.R. Vandegrift, J.M. Williams, and G.N. Whitbred: Method of making a polarizing glass, US6536236, 2003.

    Google Scholar 

  23. 23.

    N.F. Borrelli, and D.M. Trotter: Method of making polarizing glasses, US7104090, 2006.

    Google Scholar 

  24. 24.

    F.N. Borrelli, G.L. Mann, and G.N. Whitbred: Broadband contrast polarizing glass, US6221480, 2001.

    Google Scholar 

  25. 25.

    Q.Q. Wang, J.B. Han, H.M. Gong, D.J. Chen, X.J. Zhao, J.Y. Feng, and J.J. Ren: Linear and nonlinear optical properties of Ag nanowire polarizing glass. Adv. Funct. Mater. 16, 2405 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    J.Y. Feng, X.J. Zhao, B.S. Liu, and X.D. Zhou: Microstructural characterization and optical polarization of glass with needle-like micro–nano silver oriented arrangement. Opt. Commun. 281, 5041 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    C.G. Lin, H.Z. Tao, J.Y. Feng, L.J. Gong, R.K. Pan, and X.J. Zhao: Preparation of polarizing glasses of large size based on the directional alignment of crystal nucleus. Mater. Lett. 62, 4100 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    S. Matsuda, Y. Yasuda, and S. Ando: Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible linear polarizers. Adv. Mater. 17, 2221 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith: Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    B.M.I. van der Zande, L. Pages, R.A.M. Hikmet, and A. van Blaaderen: Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J. Phys. Chem. B 103, 5761 (1999).

    Article  Google Scholar 

  31. 31.

    O. Wilson, G.J. Wilson, and P. Mulvaney: Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    J.P. Juste, B.R. González, P. Mulvaney, and L.M. Liz-Marzán: Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065 (2005).

    Article  Google Scholar 

  33. 33.

    D.L. Chen and L. Gao: Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process. J. Cryst. Growth 264, 216 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Y.G. Sun, B. Mayers, T. Herricks, and Y.N. Xia: Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, and G.Q. Xu: Photochemical formation of silver nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12, 909 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    Egon Matijevic: Preparation and properties of uniform size colloids. Chem. Mater. 5, 412 (1993).

    CAS  Article  Google Scholar 

  37. 37.

    P.Y. Silvert, R.H. Urbina, and K.T. Elhsissen: Preparation of colloidal silver dispersions by the polyol process: Mechanism of particle formation. J. Mater. Chem. 7, 293 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    Y.G. Sun and Y.N. Xia: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14, 833 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, and Y.N. Xia: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 14, 4736 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    M. Tsuji, K. Matsumoto, N. Miyamae, T. Tsuji, and X. Zhang: Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone. Cryst. Growth Des. 7, 311 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    T. Buffeteau, B. Desbat, and L. Bokobza: The use of near-infra-red spectroscopy coupled to the polarization modulation technique to investigate molecular orientation in uniaxially stretched polymers. Polymer 36, 4339 (1995).

    CAS  Article  Google Scholar 

  42. 42.

    K.M. Davis and M. Tomozawa: An infrared spectroscopic study of water-related species in silica glasses. J. Non-Cryst. Solids 201, 177 (1996).

    CAS  Article  Google Scholar 

  43. 43.

    M. Saito and M. Miyagi: Micropolarizer using anodized alumina with implanted metallic columns: Theoretical analysis. Appl. Opt. 28, 3529 (1989).

    CAS  Article  Google Scholar 

  44. 44.

    M. Saito and M. Miyagi: Anisotropic optical loss and birefringence of anodized alumina film. J. Opt. Soc. Am. A 6, 1895 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO. 705036), the National Science Foundation of China (No.51032005) and the Fundamental Research Funds for the Central Universities (Wuhan University of Technology).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinyang Feng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, J., Ma, X., Mao, H. et al. Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property. Journal of Materials Research 26, 2691–2700 (2011). https://doi.org/10.1557/jmr.2011.254

Download citation