Influence of sample thickness and experimental device configuration on the spherical indentation of AISI 1095 steel


Most instrumented indentation theoretical studies and models consider bulk sample geometry, which implies no influence on the indentation response. In the particular case of thin samples, our previous studies have shown that the thickness has an influence on the experimental device behavior as well as on the sample and material response. This work is a numerical and experimental illustration of this particularity. Spherical macroindentation tests are performed on AISI 1095 steel samples of thicknesses varying from 0.55 to 10 mm. Experimental and numerical results are compared. Experimental limitations are investigated, and solutions to obtain results that are independent of the sample thickness and curvature are proposed. We show that the proposed solution leads to a reliable identification of the material mechanical properties of thin and moderately bent samples.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.


  1. 1.

    Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. Rep. 44, 91 (2004).

    Article  Google Scholar 

  2. 2.

    X. Chen, N. Ogasawara, M. Zhaov, and N. Chiba: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618 (2007).

    Article  Google Scholar 

  3. 3.

    S. Kucharski and Z. Mröz: Identification of plastic hardening parameters of metals from spherical indentation tests. Mater. Sci. Eng., A 318, 65 (2001).

    Article  Google Scholar 

  4. 4.

    Y-P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    J.H. Lee, T. Kim, and H. Lee: A study on robust indentation techniques to evaluate elastic-plastic properties of metals. Int. J. Solids Struct. 47, 647 (2010).

    Article  Google Scholar 

  7. 7.

    M. Beghini, L. Bertini, and V. Fontanari: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    M. Zhao, N. Ogasawara, N. Chiba, and X-A. Chen: New approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Cao, X. Qian, and N. Huber: Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain. Mater. Sci. Eng., A 454, 1 (2007).

    Article  Google Scholar 

  10. 10.

    J-M. Collin, G. Mauvoisin, O. Bartier, R. El Abdi, and P. Pilvin: Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes. Mater. Sci. Eng., A 501, 140 (2009).

    Article  Google Scholar 

  11. 11.

    J-M. Collin, T. Parenteau, G. Mauvoisin, and P. Pilvin: Material parameters identification using experimental continuous indentation for cyclic hardening. Comput. Mater. Sci. 46, 333 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    J-M. Collin, G. Mauvoisin, and P. Pilvin: Materials characterization by instrumented indentation using two different approaches. Mater. Des. 31, 636 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    P. Jiang, T-H. Zhang, Y-H. Feng, and N-G. Liang: Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach. J. Mater. Res. 24, 1045 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    N. Ogasawara, N. Chiba, and X. Chen: A simple framework of spherical indentation for measuring elastoplastic properties. Mech. Mater. 41, 1025 (2009).

    Article  Google Scholar 

  15. 15.

    A. Nayebi, O. Bartier, G. Mauvoisin, and R. El Abdi: New method to determine the mechanical properties of heat treated steels. Int. J. Mech. Sci. 43, 2679 (2001).

    Article  Google Scholar 

  16. 16.

    A. Nayebi, R. El Abdi, O. Bartier, and G. Mauvoisin: Hardness profile analysis of elasto-plastic heat-treated steels with a gradient in yield strength. Mater. Sci. Eng., A 333, 160 (2002).

    Article  Google Scholar 

  17. 17.

    A. Nayebi, R. El Abdi, O. Bartier, and G. Mauvoisin: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).

    Article  Google Scholar 

  18. 18.

    M. Bocciarelli, G. Bolzon, and G. Maier: Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37, 855 (2005).

    Article  Google Scholar 

  19. 19.

    A. Yonezu, K. Yoneda, H. Hirakata, M. Sakihara, and K. Minoshima: A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation–Application to SiC whisker-reinforced aluminium alloy. Mater. Sci. Eng. A 527, 7646 (2010).

    Article  Google Scholar 

  20. 20.

    K-H. Chung, W. Lee, J-H. Kim, C. Kim, S-H. Park, D. Kwon, and K. Chung: Characterization of mechanical properties by indentation tests and FE analysis–validation by application to a weld zone of DP590 steel. Int. J. Solids Struct. 46, 344 (2009).

    Article  Google Scholar 

  21. 21.

    F. Yang: Thickness effect on the indentation of an elastic layer. Mater. Sci. Eng., A 358, 226 (2003).

    Article  Google Scholar 

  22. 22.

    L. Largeau, G. Patriarche, A. Rivière, J.P. Rivière, and E. Le Bourhis: Indentation punching through thin (011) InP. J. Mater. Sci. 39, 943 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    G. Patriarche, L. Largeau, J. P. Rivière and E. Le Bourhis: Vickers indentation of thin GaAs (001) samples. Philos. Mag. 84, 3281 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    H. Hertz: Uber die Berührung festischer Körper. J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Philippe Brammer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brammer, P., Mauvoisin, G., Bartier, O. et al. Influence of sample thickness and experimental device configuration on the spherical indentation of AISI 1095 steel. Journal of Materials Research 27, 76–84 (2012).

Download citation