Relationship between yield point phenomena and the nanoindentation pop-in behavior of steel


Pop-ins on nanoindentation load–displacement curves of a ferritic steel were correlated with yield drops on its tensile stress–strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocation locking by solutes (Cottrell atmospheres).

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation included dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentations of gold single crystals. Phys. Rev. B 55, R16057 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    E.B. Tadmor, R. Miller, R. Phillips, and M. Ortiz: Nanoindentation and incipient plasticity. J. Mater. Res. 14, 2233 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    A. Gouldstone, H-J. Koh, K-Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    M. Goken and M. Kempf: Pop-ins in nanoindentation-the initial yield point. Z. Metallk. 92, 1061 (2001).

    CAS  Google Scholar 

  8. 8.

    A. Gouldstone, K.J. Van Vliet, and S. Suresh: Simulation of defect nucleation in a crystal. Nature 411, 656 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    H. Bei, E.P. George, J.L. Hay, and G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 045501 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    T. Ohmura and K. Tsuzaki: Plasticity initiation and subsequent deformation behavior in the vicinity of single grain boundary investigated through nanoindentation technique. J. Mater. Sci. 42, 1728 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    A.A. Zbib and D.F. Bahr: Dislocation nucleation and source activation during nanoindentation yield points. Metall. Mater. Trans. A 38A, 2249 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    H. Bei, Y.F. Gao, S. Shim, E.P. George, and G.M. Pharr: Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77, 060103(R) (2008).

    Article  CAS  Google Scholar 

  14. 14.

    S. Shim, H. Bei, E.P. George, and G.M. Pharr: A different type of indentation size effect. Scr. Mater. 59, 1095 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    A. Barnoush, M.T. Welsch, and H. Vehoff: Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging. Scr. Mater. 63, 465 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    T-H. Ahn, C-S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S.M. Han, T. Bozorg-Grayeli, J.R. Groves, and W.D. Nix: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr: Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater. 59, 934 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    G.M. Pharr, W.C. Oliver, and D.R. Clarke: Hysteresis and discontinuity in the indentation load-displacement behavior of silicon. Scr. Metall. 23, 1949 (1989).

    CAS  Article  Google Scholar 

  20. 20.

    G.M. Pharr, W.C. Oliver, and D.S. Harding: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6, 1129 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    D.L. Callahan, and J.C. Morris: Extent of phase transformation in silicon hardness indentations. J. Mater. Res. 7, 1614 (1992).

    CAS  Article  Google Scholar 

  23. 23.

    E.R. Weppelmann, J.S. Field, and M.V. Swain: Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993).

    CAS  Article  Google Scholar 

  24. 24.

    E.R. Weppelmann, J.S. Field, and M.V. Swain: Influence of spherical indentor radius on the indentation-induced transformation behaviour of silicon. J. Mater. Sci. 30, 2455 (1995).

    CAS  Article  Google Scholar 

  25. 25.

    H.N. Han, and D-W. Suh: A model for transformation plasticity during bainite transformation of steel under external stress. Acta Mater. 51, 4907 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    H.N. Han, C.G. Lee, C-S. Oh, T-H. Lee, and S-J. Kim: A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Mater. 52, 5203 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    J-I. Jang, M.J. Lance, S. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    H.N. Han, C-G. Lee, D-W. Suh, and S-J. Kim: A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation. Mater. Sci. Eng., A 485, 224 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    H.N. Han, C-S. Oh, G. Kim, and O. Kwon: Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation. Mater. Sci. Eng., A 499, 462 (2009).

    Article  CAS  Google Scholar 

  30. 30.

    M-G. Lee, S-J. Kim, and H.N. Han: Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite. Int. J. Plast. 26, 688 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Nanoindentation-induced deformation of Ge. Appl. Phys. Lett. 80, 2651 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    R.D.K. Misra, Z. Zhang, Z. Jia, M.C. Somani, and L.P. Karjalainen: Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels. Scr. Mater. 63, 1057 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    A.H. Cottrell: Dislocations and Plastic Flow in Crystals (Oxford Univ. Press, London, England, 1953), pp. 139–150.

    Google Scholar 

  34. 34.

    T-H. Ahn, K-K. Um, J-K. Choi, D.H. Kim, K.H. Oh, M. Kim, and H.N. Han: Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation. Mater. Sci. Eng., A 523, 173 (2009).

    Article  CAS  Google Scholar 

  35. 35.

    J.Y. Kang, D.H. Kim, S-I. Baik, T-H. Ahn, Y-W. Kim, H.N. Han, K.H. Oh, H-C. Lee, and S.H. Han: Phase analysis of steels by grain-averaged EBSD functions. ISIJ Int. 51, 130 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Y.M. Kim, T-H. Ahn, K.K. Park, K.H. Oh, and H.N. Han: Identification of dynamic ferrite formed during deformation of super-cooled austenite by image-based analysis of EBSD map. Met. Mater. Int. 17, 181–186 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    ASTM: E 8–00, Standard Test Methods for Tension Testing of Metallic Materials.

  38. 38.

    W.A. Soer, K.E. Aifantis, and J.Th.M. De Hosson: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53, 4665 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    E.T. Lilleodden and W.D. Nix: Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 54, 1583 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, England, 1985), pp. 84–106.

    Google Scholar 

  41. 41.

    D.N. Lee: Texture and Related Phenomena (The Korean Institute of Metals and Materials, Seoul, Korea, 2006), pp. 47–107.

    Google Scholar 

  42. 42.

    R.W.K. Honeycombe: Plastic Deformation of Metals, 2nd ed. (Edward Arnold, London, England, 1984), pp. 33–35.

    Google Scholar 

  43. 43.

    C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).

    CAS  Article  Google Scholar 

  44. 44.

    W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).

    CAS  Article  Google Scholar 

  45. 45.

    D.E. Kramer, K.B. Yoder, and W.W. Gerberich: Physics of condensed matter, structure, defects and mechanical properties. Philos. Mag. A 81, 2033 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  47. 47.

    Y-H. Lee, H-Y. Yu, U-B. Baek, and S-H. Nahm: Analysis of residual stress through a recovery factor of remnant indents formed on artificially stressed metallic glass surfaces. Kor. J. Met. Mater. 48, 203 (2010).

    CAS  Article  Google Scholar 

Download references


This study was supported by National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (2010-0018936). CSO is thankful for the support by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. EPG was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, U.S. Department of Energy.

Author information



Corresponding author

Correspondence to Heung Nam Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahn, TH., Oh, CS., Lee, K. et al. Relationship between yield point phenomena and the nanoindentation pop-in behavior of steel. Journal of Materials Research 27, 39–44 (2012).

Download citation