The influence of in situ formed precipitates on the plasticity of Fe-Nb-B-Cu bulk metallic glasses

Abstract

Improved room temperature plasticity was achieved by microalloying Cu in a series of (Fe71Nb6B23)100−xCux (x = 0, 0.25, 0.5, 0.75, and 1) glass matrix alloys with tunable size and volume fraction of precipitates composed of α-Fe and Fe23B6 phases. When ∼10-nm-sized nano-scale precipitates are formed with a size comparable to the shear bandwidth by controlling the added content of Cu, the (Fe71Nb6B23)99.5Cu0.5 alloy exhibits a maximum plastic strain of 4.3 ± 0.8% with pronounced multiple shear banding. A further increase in the size of the precipitates up to micrometer scale results in catastrophic fracture accompanied with irregular cracks, revealing that the fracture mechanism of the different alloys is controlled by the precipitate size.

This is a preview of subscription content, access via your institution.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

References

  1. 1.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    W.L. Johnson: Bulk glass-forming metallic alloys. MRS Bull. 24, 42 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

    CAS  Google Scholar 

  4. 4.

    C.A. Schuh and A.C. Lund: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    R.F. Decker: Alloy design using second phase. Metall. Trans. 4, 2495 (1973).

    CAS  Article  Google Scholar 

  6. 6.

    R.W. Cahn and P. Haasen: Physical Metallurgy (North-Holland, Amsterdam, 1996).

    Google Scholar 

  7. 7.

    H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    J.C. Lee, Y.C. Kim, J.P. Ahn, and H.S. Kim: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetrious, and W.L. Johnson: Designing bulk metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    C. Fan, R.T. Ott, and T.C. Hufnagel: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    J.M. Park, D.H. Kim, K.B. Kim, E. Fleury, M.H. Lee, W.T. Kim, and J. Eckert: Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    CAS  Article  Google Scholar 

  15. 15.

    J.J. Lewandowski and A.L. Greer: Temperature rise at shear bands in metallic glass. Nat. Mater. 5, 15 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    E. Pekarskaya, C.P. Kim, and W.L. Johnson: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Y.M. Chen, T. Ohkubo, T. Mukai, and K. Hono: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24, 1 (2009).

    Article  Google Scholar 

  19. 19.

    Y. Shi and M.L. Falk: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).

    Article  Google Scholar 

  20. 20.

    Y. Zhang and A.L. Greer: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).

    Article  Google Scholar 

  21. 21.

    R. Matsumoto and N. Miyazaki: The critical length of shear bands in metallic glass. Scr. Mater. 59, 107 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    J.M. Park, G. Wang, R. Li, N. Mattern, J. Eckert, and D.H. Kim: Enhancement of plastic deformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio. Appl. Phys. Lett. 96, 031905 (2010).

    Article  Google Scholar 

  23. 23.

    A. Makino, X. Li, K. Yubuta, C. Chang, T. Kubota, and A. Inoue: The effect of Cu on the plasticity of Fe-Si-B-P based bulk metallic glass. Scr. Mater. 60, 277 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    J.M. Park, D.H. Kim, K.B. Kim, and J. Eckert: Improving the plasticity of a high strength Fe-Si-Ti ultrafine composite by introduction of an immiscible element. Appl. Phys. Lett. 97, 251915 (2010).

    Article  Google Scholar 

  25. 25.

    Z.F. Zhang, G. He, H. Zhang, and J. Eckert: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composite containing ductile dendrites. Scr. Mater. 52, 945 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, and J.J. Lewandowski: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    F. Spaepen: Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    CAS  Article  Google Scholar 

  28. 28.

    A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    J.M. Park, J.S. Park, J.-H. Kim, and H.J. Chang: Mechanical behaviors of partially devitrified Ti-based bulk metallic glasses. J. Mater. Sci. 40, 4999 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Y.C. Kim, J.H. Na, J.M. Park, D.H. Kim, J.K. Lee, and W.T. Kim: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    M.W. Chen, A. Inoue, W. Zhang, and T. Sakurai: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  32. 32.

    J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  33. 33.

    K. Hajlaoui, A.R. Yavari, B. Doisneau, A. LeMoulec, W.J. Botta, F.G. Vaughan, A.L. Greer, A. Inoue, W. Zhang, and A. Kvick: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    M.L. Lee, Y. Li, and C.A. Schuh: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    J.M. Park, J. Jayaraj, D.H. Kim, N. Mattern, G. Wang, and J. Eckert: Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance. Intermetallics 18, 1908 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Defense Acquisition Program Administration and the Agency for Defense Development, the Global Research Laboratory Program of the Korea Ministry of Science and Technology, and the Center for Advanced Materials Processing of the 21st Century Frontier R&D Program of the Korea Ministry of Knowledge Economy. Stimulating discussions with E. Fleury, J.H. Han, K.B. Kim, S. Pauly, S. Scudino, U. Kühn, and W.T. Kim are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Do Hyang Kim.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, J.M., Kim, D.H., Stoica, M. et al. The influence of in situ formed precipitates on the plasticity of Fe-Nb-B-Cu bulk metallic glasses. Journal of Materials Research 26, 2080–2086 (2011). https://doi.org/10.1557/jmr.2011.202

Download citation