Skip to main content
Log in

Effects of high-temperature ambient on cyclic fatigue of La0.8Sr0.2MnO3+δ

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of water vapor and oxygen on the cyclic fatigue behavior of oxygen-excess La0.8Sr0.2MnO3+δ (LSM) were investigated under three-point bending at 1273 K. Because the fatigue life did not obviously depend on the number of cycles, which also represented the effective time of the applied stress, the fracture was presumed to not be significantly controlled by stress-corrosion cracking. Under a low oxygen partial pressure (PO2), however, wet exposure inhibited both fatigue fracture and permanent deformation, in which the LSM crystal lattice was distorted and the unit cell free volume was reduced. Under a high PO2, on the contrary, the crystal symmetry was increased by the wet exposure. The inhibition of fatigue fracture and deformation at both high PH2O and low PO2 was probably caused by retardation of lanthanum diffusion through its vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I
FIG. 7.
TABLE II
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. J.P. Schwartze and S. Bröcker: The evaporation of water into air of different humidities and the inversion temperature phenomenon. Int. J. Heat Mass Transfer 43, 1791 (2000).

    Article  CAS  Google Scholar 

  2. H. Iyota, N. Nishimura, T. Onuma, and T. Nomura: Drying of sliced raw potatoes in superheated steam and hot air. Drying Tech. 19, 1411 (2001).

    Article  CAS  Google Scholar 

  3. S. Kitaoka, M. Wada, N. Kawashima, N. Osa, and T. Nagai: Development of ceramic induction heater. FC Report. Jpn. Fine Ceram. Assoc. 28, 145 (2010).

    Google Scholar 

  4. N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  5. A. Urushibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B 51, 14103 (1995).

    Article  CAS  Google Scholar 

  6. J.A.M. van Roosmalen, E.H.P Cordfunke, R.B. Helmholdt, and H.W. Zandbergen: The defect chemistry of LaMnOδ: 2. Structural aspects of LaMnOδ. J. Solid State Chem. 110, 100 (1994).

    Article  Google Scholar 

  7. J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, J.L. MacManus-Driscoll, P.S.I.P.N. de Silva, L.F. Cohen, and M.T. Fernández-Díaz: Non-stoichiometry, structural defects and properties of LaMnO3+δ with high δ values (0.11≤d≤0.29). J. Mater. Chem. 7, 2139 (1997).

    Article  CAS  Google Scholar 

  8. B.C. Tofield and W.R. Scott: Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J. Solid State Chem. 10, 183 (1974).

    Article  CAS  Google Scholar 

  9. J.F. Mitchell, D.N. Argyriou, C.D. Potter, D.G. Hinks, J.D. Jorgensen, and S.D. Bader: Structural phase diagram of La1-xSrxMnO3+δ: Relationship to magnetic and transport properties. Phys. Rev. B 54, 6172 (1996).

    Article  CAS  Google Scholar 

  10. R.A. De Souza, M.S. Islam, and E. Ivers-Tiffée: Formation and migration of cation defects in the perovskite oxide LaMnO3. J. Mater. Chem. 9, 1621 (1999).

    Article  Google Scholar 

  11. J.A.M. van Roosmalen, and E.H.P Cordfunke: The defect chemistry of LaMnOδ: 4. Defect model for LaMnOδ. J. Solid State Chem. 110, 109 (1994).

    Article  Google Scholar 

  12. H. Kamata, Y. Yonemura, J. Mizusaki, H. Tagawa, K. Naraya, and T. Sasamoto: High temperature electrical properties of the perovskite-type oxide La1-xSrxMnO3-d. J. Phys. Chem. Solids 56, 943 (1995).

    Article  CAS  Google Scholar 

  13. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, and T. Hashimoto: Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics 129, 163 (2000).

    Article  CAS  Google Scholar 

  14. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, and T. Hashimoto: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132, 167 (2000).

    Article  CAS  Google Scholar 

  15. S. Miyoshi, J.-O. Hong, K. Yashiro, A. Kaimai, Y. Nigara, K. Kawamura, T. Kawada, and J. Mizusaki: Lattice creation and annihilation of LaMnO3+δ caused by nonstoichiometry change. Solid State Ionics 154–, 257 (2002).

    Article  Google Scholar 

  16. K. Nakamura and K. Ogawa: Excess oxygen in LaMnO3+δ. J. Solid State Chem. 163, 65 (2002).

    Article  CAS  Google Scholar 

  17. R.E. Cook, K.C. Goretta, J. Wolfenstine, P. Nash, and J.L. Routbort: High-temperature deformation and defect chemistry of (La1-xSrx)1-yMnO3+δ. Acta Mater. 47, 2969 (1999).

    Article  CAS  Google Scholar 

  18. J.L. Routbort, K.C. Goretta, R.E. Cook, and J. Wolfenstine: Deformation of perovskite electronic ceramics—A review. Solid State Ionics 129, 53 (2000).

    Article  CAS  Google Scholar 

  19. A. Atkinson and A. Selçuk: Mechanical behavior of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59 (2000).

    Article  CAS  Google Scholar 

  20. C.M. D’Souza and N.M. Sammes: Mechanical properties of strontium-doped lanthanum manganite. J. Am. Ceram. Soc. 83, 47 (2000).

    Article  Google Scholar 

  21. D.L. Meixner and R.A. Cutler: Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics 146, 273 (2002).

    Article  CAS  Google Scholar 

  22. S.M. Wiederhorn, E.R. Fuller, and R. Thomson: Micromechanisms of crack growth in ceramics and glasses in corrosive environment. Meat Sci. 14, 450 (1980).

    Article  CAS  Google Scholar 

  23. S.W. Freiman: Environmentally enhanced fracture of ceramics, in Materials Stability and Environmental Degradation, edited by A. Barkatt, E.D. Verink Jr., and L.R. Smith (Mater. Res. Soc. Symp. Proc. 125, Pittsburgh, PA, 1988), p. 205.

    CAS  Google Scholar 

  24. J.E. Srawley: Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int. J. Fract. 12, 475 (1976).

    Google Scholar 

  25. S.M. Wiederhorn and L.H. Bolz: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).

    Article  CAS  Google Scholar 

  26. I.G.K Andersen, E.K. Andersen, P. Norby, and E. Skou: Determination of stoichiometry in lanthanum strontium manganates(III)(IV) by wet chemical methods. J. Solid State Chem. 113, 320 (1994).

    Article  Google Scholar 

  27. A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, and R.C. MacDuff: Relational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 52, 111 (1992).

    Article  CAS  Google Scholar 

  28. K. Nomura, and S. Tanase: Electrical conduction behavior in (La0.9Sr0.1)MIIIO3-δ(MIII=Al, Ga, Sc, In, and Lu) perovskites. Solid State Ionics 98, 229 (1997).

    Article  CAS  Google Scholar 

  29. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Regional Innovation Cluster Program (City-area type) for Western Tono area in Gifu prefecture. The authors are grateful to Professor J. Mizusaki, Tohoku University, Japan, for valuable discussions and advice during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Matsudaira, T., Igimi, D. et al. Effects of high-temperature ambient on cyclic fatigue of La0.8Sr0.2MnO3+δ. Journal of Materials Research 26, 2450–2457 (2011). https://doi.org/10.1557/jmr.2011.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.199

Navigation