Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles


Flake-like Fe particles with controllable size and structures were achieved by modulating only the grinding speed; evidence provided by x-ray diffraction, scanning electron microscopy, resistivity measurement system, and vector network analyzer disclosed the conductivity; and microwave electromagnetic (EM) and absorbing characteristics of the resultant products strongly depended on their morphology and structure. As grinding speed (V) increases from 0 to 250 revolutions per minute (rpm), the crystalline size decreases; meanwhile, both internal strain and diameter/thickness ratio increase and the conductivity reaches the maximal value at V = 140 rpm because of the improvement of the surface conductivity. Thin flake-like Fe particles facilely obtained at high grinding speed present higher values of the permittivity and permeability than spherical particles, which are ascribed to the multiple polarizations and the natural resonance. Thus, the aforementioned products with high permeability and low cost may be promising candidates for EM compatibility materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee: Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005).

    Article  Google Scholar 

  2. 2.

    C. Wang, R.T. Lv, Z.H. Huang, F.Y. Kang, and J.L. Gu: Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloy. Comp. 509, 494 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    P.H. Zhou, L.J. Deng, J.L. Xie, and D.F. Liang: Effects of particle morphology and crystal structure on the microwave properties of flake-like nanocrystalline Fe3Co2 particles. J. Alloy. Comp. 448, 303 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Yang, C.L. Xu, Y.X. Xia, T. Wang, and F.S. Li: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang: Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007).

    Article  Google Scholar 

  6. 6.

    L. Qiao, F.S. Wen, J.Q. Wei, J.B. Wang, and F.S. Li: Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys. 103, 063903 (2008).

    Article  Google Scholar 

  7. 7.

    J.H. Liu, T.Y. Ma, H. Tong, W. Luo, and M. Yan: Electromagnetic wave absorption properties of flaky Fe–Ti–Si–Al nanocrystalline composites. J. Magn. Magn. Mater. 322, 940 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    X. Wang, R.Z. Gong, H. Luo, and Z.K. Feng: Microwave properties of surface modified Fe–Co–Zr alloy flakes with mechanochemically synthesized polystyrene. J. Alloy. Comp. 480, 761 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    P.H. Zhou, Y.Q. Liu, and L.J. Deng: Effect of 3d transition metal substitution on microstructure and microwave absorption properties of FeSiB nanocrystalline flakes. J. Magn. Magn. Mater. 322, 794 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    R.M. Walser and W. Kang: Fabrication and properties of microforged ferromagnetic nanoflakes. IEEE Trans. Magn. 34, 1144 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    X.S. Fang, L.F. Hu, C.H. Ye, and L.D. Zhang: One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure Appl. Chem. 82, 2185 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    G.X. Tong, Q. Hua, W.H. Wu, M.Y. Qin, L.C. Li, and P.J. Gong: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Ser. E Technol. Sci. 54, 484 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    X.S. Fang, T.Y. Zhai, U.K. Gautam, L. Li, L.M. Wu, Y. Bando, and D. Golberg: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    G.X. Tong, J.G. Guan, Z.D. Xiao, F.Z. Mou, W. Wang, and G.Q. Yan: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    J.S. Benjamin: Dispersion strengthened super alloys by mechanical alloying. Metall. Trans. A 1, 2943 (1970).

    CAS  Google Scholar 

  16. 16.

    Y.D. Kim, J.Y. Chung, J. Kim, and H. Jeon: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng. A 291, 17 (2000).

    Article  Google Scholar 

  17. 17.

    G.X. Tong, W.H. Wu, Q. Hua, Y.Q. Miao, J.G. Guan, and H.S. Qian: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    K. Fuchs: The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 34, 100 (1938).

    CAS  Article  Google Scholar 

  19. 19.

    H. Hoffmann and J. Vancea: Critical assessment of thickness-dependent conductivity of thin metal films. Thin Solid Films 85, 147 (1981).

    Article  Google Scholar 

  20. 20.

    P.G. Klemens and M. Gell: Thermal conductivity of thermal-barrier coatings. Mater. Sci. Eng. A 245, 143 (1998).

    Article  Google Scholar 

  21. 21.

    G. Soyez, J.A. Eastman, L.J. Thompson, G.R. Bai, P.M. Baldo, A.W. McCormick, R.J. DiMelfi, A.A. Elmustafa, M.F. Tambwe, and D.S. Stone: Grain-size-dependent thermal conductivity of nanocrystalline yttriastabilized zirconia films grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 77, 1155 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    X.S. Fang, C.H. Ye, L.D. Zhang, and T. Xie: Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    X.S. Fang, C.H. Ye, L.D. Zhang, J.X. Zhang, J.W. Zhao, and P. Yan: Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Small 1, 422 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    G.X. Tong, J.G. Guan, X.A. Fan, W. Wang, and W. Li: Influence of pyrolysis temperature on the static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sinica 44, 867 (2008).

    CAS  Google Scholar 

  25. 25.

    X.S. Fang, C.H. Ye, T. Xie, Z.Y. Wang, J.W. Zhao, and L.D. Zhang: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).

    Article  Google Scholar 

  26. 26.

    H.R. Li: Introduction to Dielectric Physics (Chengdu University of Technology Press, Chengdu, 1990), p. 89.

    Google Scholar 

  27. 27.

    J.R. Liu, M. Itoh, and K. Machida: Magnetic and electromagnetic wave absorption properties of a-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 88, 062503 (2006).

    Article  Google Scholar 

  28. 28.

    Z.W. Li, L. Chen, C.K. Ong, and Z. Yang: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato: GHz microwave absorption of a fine a-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J. Alloy. Comp. 330, 301 (2002).

    Article  Google Scholar 

  30. 30.

    M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, and G.W. Taylor: Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    J.G. Li, J.J. Huang, Y. Qin, and F. Ma: Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng. B 138, 199 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent, and F. Fievet: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    D. Mercier, J.C.S. Lévy, G. Viau, F. Fiévet-Vincent, F. Fiévet, P. Toneguzzo, and O. Acher: Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles. Phys. Rev. B 62, 532 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    S. Yoshida, S. Ando, Y. Shimada, K. Suzuki, K. Nomura, and K. Fukamichi: Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging. J. Appl. Phys. 93, 6659 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    X. Tang, Q. Tian, B.Y. Zhao, and K. Hu: The microwave electromagnetic and absorption properties of some porous iron powders. Mater. Sci. Eng. A 445–446, 135 (2007).

    Article  Google Scholar 

  36. 36.

    X.A. Fan, J.G. Guan, W. Wang, and G.X. Tong: Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D: Appl. Phys. 42, 075006 (2009).

    Article  Google Scholar 

Download references


This work was financially supported by Special Grand Science-Technology Project in Zhejiang Province (No. 2010C11053), Natural Scientific Foundation of Zhejiang Province (Grant Nos. Y4100022 and Y4090636), New Bud Talents Grant from Zhejiang Province, and Science and Technology Projects from Jinhua City (Grant No. 2010A12066).

Author information



Corresponding author

Correspondence to Guoxiu Tong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tong, G., Ma, J., Wu, W. et al. Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. Journal of Materials Research 26, 682–688 (2011).

Download citation