Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties

Abstract

Ga2O3/SnO2 core–shell nanowires were synthesized by combining thermal evaporation and atomic layer deposition (ALD), and nanowire network sensors were fabricated by directly depositing them on the substrate with interdigitated Pt electrodes. Crystalline Ga2O3 nanowires of ∼20 nm diameter were grown on Au-catalyzed substrate at 800 °C. ALD-grown SnO2 shell layer was composed of interconnected nanoparticles of <10 nm, and its thickness was varied depending on the number of ALD cycles. The core–shell nanowire sensors exhibited the highest ethanol gas response at 400 °C, which was ∼200 °C lower than that for Ga2O3 nanowire sensor. The 100 cycle SnO2-coated nanowire sensor whose shell thickness was close to the Debye length of SnO2 had higher ethanol gas response in all the temperatures investigated. In addition, the core–shell nanowire sensors showed an order of magnitude higher gas response toward ethanol against other gases, such as H2, CO, and NH3.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

References

  1. 1.

    H.H. Tippins: Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys. Rev. 140, A316 (1965).

    Article  Google Scholar 

  2. 2.

    H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono: Frontier of transparent oxide semiconductors. Solid-State Electron. 47, 2261 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    H.B. Xie, L.M. Chen, Y.N. Liu, and K.L. Huang: Preparation and photoluminescence properties of Eu-doped α- and β-Ga2O3. Solid State Commun. 141, 12 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    K. Nakagawa, C. Kajita, Y. Ide, M. Okamura, S. Kato, H. Kasuya, N. Ikenaga, T. Kobayashi, and T. Suzuki: Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts. Catal. Lett. 64, 215 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    T. Schwebel, M. Fleischer, and H. Meixner: A selective, temperature compensated O2 sensor based on Ga2O3 thin films. Sens. Actuators, B 65, 176 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    M. Ogita, K. Hiro, Y. Nakanishi, and Y. Hatanaka: Ga2O3 thin film for oxygen sensor at high temperature. Appl. Surf. Sci. 175-, 721 (2001).

    Article  Google Scholar 

  7. 7.

    M. Fleischer and H. Meixner: Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sens. Actuators, B 6, 257 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    M. Fleischer, J. Giber, and H. Meixner: H2-induced changes in electrical conductance of β-Ga2O3 thin film system. Appl. Phys., A 54, 560 (1992).

    Article  Google Scholar 

  9. 9.

    T. Schwebel, M. Fleischer, H. Meixner, and C.D. Kohl: CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens. Actuators, B 49, 46 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    A. Kolmakov and M. Moskovits: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    G. Shen, P.C. Chen, K. Ryu, and C. Zhou: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    X.J. Huang and Y.K. Choi: Chemical sensors based on nanostructured materials. Sens. Actuators, B 122, 659 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, and G.W. Yang: Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C. 112, 6643 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    P. Feng, X.Y. Xue, Y.G. Liu, Q. Wan, and T.H. Wang: Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination. Appl. Phys. Lett. 89, 112114 (2006).

    Article  CAS  Google Scholar 

  15. 15.

    Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li: O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens. Actuators, B 129, 666 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    S.P. Arnold, S.M. Prokes, F.K. Perkins, and M.E. Zaghloul: Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett. 95, 103102 (2009).

    Article  CAS  Google Scholar 

  17. 17.

    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe: Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl. Phys. Lett. 70, 3561 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu: Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J. Phys. Chem. Solids. 67, 1656 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido: Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys. Status Solidi. C 4, 2310 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    J. Frank, M. Fleischer, H. Meixner, and A. Feltz: Enhancement of sensitivity and conductivity of semiconducting Ga2O3 gas sensors by doping SnO2. Sens. Actuators, B 49, 110 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    L. Mazeina, Y.N. Picard, S.I. Maximenko, F.K. Perkins, E.R. Glaser, M.E. Twigg, J.A. Freitas Jr., and S.M. Prokes: Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3-SnO2 heterostructures for gas sensing applications. Cryst. Growth Des. 9, 4471 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    C. Jin, H. Kim, K. Baek, H.W. Kim, and C. Lee: Preparation, structure, and photoluminescence properties of Ga2O3/SnO2 coaxial nanowires. Cryst. Res. Technol. 45, 199 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    K.W. Kim, P.S. Cho, S.J. Kim, J.H. Lee, C.Y. Kang, J.S. Kim, and S.J. Yoon: The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens. Actuators, B 123, 318 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Y.J. Chen, C.L. Zhu, L.J. Wang, P. Gao, M.S. Cao, and X.L. Shi: Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core–shell nanorods. Nanotechnology 20, 045502 (2009).

    Article  CAS  Google Scholar 

  25. 25.

    I.S. Hwang, S.J. Kim, J.K. Choi, J.W. Choi, H.J. Ji, G.T. Kim, G. Cao, and J.H. Lee: Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires. Sens. Actuators, B 148, 595 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    G. Choi, L. Satyanarayana, and J. Park: Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 films for gas sensing. Appl. Surf. Sci. 252, 7878 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    D.H. Kim, J.H. Kwon, M.Y. Kim, and S.H. Hong: Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Cryst. Growth. 322, 33 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    J.J. Park, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, and S.G. Yoon: Very thin TiO2 films prepared by plasma enhanced atomic layer. Integr. Ferroelectr. 68, 129 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  30. 30.

    E. Auer, A. Lugstein, S. Löffler, Y.J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz: Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires. Nanotechnology 20, 434017 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    D.D. Edwards and T.O. Mason: Subsolidus phase diagram in the Ga2O3-In2O3-SnO2 system. J. Am. Ceram. Soc. 81, 3285 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe: Development of SnO2-based ethanol gas sensor. Sens. Actuators, B 9, 63 (1992).

    CAS  Article  Google Scholar 

  33. 33.

    Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang: Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators, B 132, 67 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, and S. Wu: Facile synthesis of highly ethanol-sensitive SnO2 nanoparticles. Sens. Actuators, B 139, 369 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Q. Qi, T. Zhang, L. Liu, X. Zheng, and G. Lu: Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens. Actuators, B 141, 174 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    H. Ogawa, M. Nishikawa, and A. Abe: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).

    CAS  Article  Google Scholar 

  37. 37.

    W.S. Kim, B.S. Lee, D.H. Kim, H.C. Kim, W.R. Yu, and S.H. Hong: SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21, 245605 (2010).

    Article  CAS  Google Scholar 

  38. 38.

    Y.C. Lee, H. Huang, O.K. Tan, and M.S. Tse: Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuators, B 132, 239 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    Q. Qi, T. Zhang, L. Liu, and X. Zheng: Synthesis and toluene sensing properties of SnO2 nanofibers. Sens. Actuators, B 137, 471 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    L. Yu, X. Fan, L. Qi, L. Ma, and W. Yan: Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl. Surf. Sci. 257, 3140 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    N.V. Hieua, H.R. Kim, B.K. Ju, and J.H. Lee: Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens. Actuators, B 133, 228 (2008).

    Article  CAS  Google Scholar 

  42. 42.

    Y. Liu, E. Koep, and M. Liu: A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 17, 3997 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Y.K. Fang and J.J. Lee: A tin oxide thin film sensor with high ethanol sensitivity. Thin Solid Films. 169, 51 (1989).

    CAS  Article  Google Scholar 

  44. 44.

    S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, and S.K. Kulkarni: Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295, 271 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2011-0000147).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seong-Hyeon Hong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, YG., Kim, WS., Kim, DH. et al. Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. Journal of Materials Research 26, 2322–2327 (2011). https://doi.org/10.1557/jmr.2011.189

Download citation