Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate films


We have demonstrated that the microstructure of thick pentaerythritol tetranitrate (PETN) films can be controlled using physical vapor deposition by varying the film/substrate interface. PETN films were deposited on silicon and fused silica with and without a thin layer of sputtered aluminum to demonstrate the effects of the interface on subsequent film growth. Evolution of surface morphology, average density, and surface roughness as a function of film thickness were characterized using surface profilometry, scanning electron microscopy, and atomic force microscopy. Significant variations in density, pore size, and surface morphology were observed in films deposited on the different substrates. In addition, x-ray diffraction experiments showed that while films deposited on bare fused silica or silicon had only weak texturing, films deposited on a sputtered aluminum layer were highly oriented, with a strong (110) out-of-plane texture.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    B.A. Movchan and A.V. Demchishin: Study of structure and properties of thick film vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide. Phys. Met. Metall. 28, 83 (1969).

    Google Scholar 

  2. 2.

    J.A. Thornton: High-rate thick-film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).

    CAS  Article  Google Scholar 

  3. 3.

    R. Messier, A.P. Giri, and R.A. Roy: Revised strucuture zone model for thin-film physical structure. J. Vac. Sci. Technol., A 2, 500 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    D. Kafer and G. Witte: Growth of crystalline rubrene films with enhanced stability. Phys. Chem. Chem. Phys. 7, 2850 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    G. Witte, K. Hanel, S. Sohnchen, and C. Woll: Growth and morphology of thin films of aromatic molecules on metals: The case of perylene. Appl. Phys., A 82, 447 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    F. Schreiber: Organic molecular beam deposition: Growth studies beyond the first monolayer. Phys. Status Solidi. A 201, 1037 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    M. Mobus and N. Karl: The growth of organic thin-films on silicon substrates studied by x-ray reflectometry. Thin Solid Films 215, 213 (1992).

    Article  Google Scholar 

  8. 8.

    S.R. Forrest, P.E. Burrows, E.I. Haskal, and F.F. So: Ultrahigh-vacuum quasiepitaxial growth of model van-der-Waals thin-films Part 2-Experiment. Phys. Rev. B 49, 11309 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, and S.R. Forrest: In situ studies of morphology, strain, and growth modes of a molecular organic thin film. Phys. Rev. B 56, 3046 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    F. Yang, M. Shtein, and S.R. Forrest: Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cells. J. Appl. Phys. 98, 014906 (2005).

    Article  Google Scholar 

  11. 11.

    D.Y. Zhong, M. Hirtz, W.C. Wang, R.F. Dou, L.F. Chi, and H. Fuchs: Kinetics of island formation in organic film growth. Phys. Rev. B 77, 113404 (2008).

    Article  Google Scholar 

  12. 12.

    K. Vasseur, C. Rolin, S. Vandezande, K. Temst, L. Froyen, and P. Heremans: A growth and morphology study of organic vapor phase deposited perylene diimide thin films for transistor applications. J. Phys. Chem. C 114, 2730 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    G.X. Zhang and B.L. Weeks: Surface morphology of organic thin films at various vapor flux. Appl. Surf. Sci. 256, 2363 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    H. Eyring, R.E. Powell, G.H. Duffy, and R.B. Parlin: The stability of detonation. Chem. Rev. 45, 69 (1949).

    CAS  Article  Google Scholar 

  15. 15.

    A.W. Campbell, W.C. Davis, J.B. Ramsay, and J.R. Travis: Shock initiation of solid explosives. Phys. Fluids 4, 511 (1961).

    Article  Google Scholar 

  16. 16.

    P. Howe, R. Frey, B. Taylor, and V. Boyle: Shock initiation and the critical energy concept, in Proceedings of the 6th Symposium (International) on Detonation (Office of Naval Research, Arlington, VA, 1976), p. 11.

    Google Scholar 

  17. 17.

    B.M. Dobratz and P.C. Crawford: LLNL explosives handbook–properties of chemical explosives and explosive simulants (Lawrence Livermore National Laboratory Report UCRL-52997-Chg.2, Livermore, CA, 1985).

    Google Scholar 

  18. 18.

    B.A. Khasainov, B.S. Ermolaev, H.N. Presles, and P. Vidal: On the effect of grain size on shock sensitivity of heterogeneous high explosives. Shock Waves 7, 89 (1997).

    Article  Google Scholar 

  19. 19.

    N.K. Bourne: On the laser ignition and initiation of explosives. Proc. R. Soc. London, Ser. A 457, 1401 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    A.A. Kotomin, A.S. Kozlov, and S.A. Dushenok: Detonatability of high-energy-density heterocyclic compounds. Russ. J. Phys. Chem. B 1, 573 (2007).

    Article  Google Scholar 

  21. 21.

    S.A. Sheffield and R.P. Engelke: Condensed-phase explosives: Shock initiation and detonation phenomena, in Shock Wave Science and Technology Reference Library, edited by Y. Horie (Springer-Verlag, Berlin Heidelberg, 2009), pp. 1–59.

    Google Scholar 

  22. 22.

    A.W. Campbell and R. Engelke: The diameter effect in high-density heterogeneous explosives, in Proceedings of the 6th Symposium (International) on Detonation (Office of Naval Research, Arlington, VA, 1976), p. 642.

    Google Scholar 

  23. 23.

    X.L. Wang, Q.J. Jiao, and G.X. Li: Study on integrated charge technology of microminiature explosion element, in Theory and Practice of Energetic Materials, Vol. 6, edited by Y.J. Wang, P.G. Huang, and S.G. Li. (Science Press, Monmouth Junction, 2005) pp. 61–65.

    Google Scholar 

  24. 24.

    A.S. Tappan, R. Knepper, R.R. Wixom, J.C. Miller, M.P. Marquez, and J.P. Ball: Critical thickness measurements in vapor-deposited pentaerythritol tetranitrate (PETN) films, in Proceedings of the 14th International Detonation Symposium (Office of Naval Research, Arlington, VA, 2010), p. 1087.

    Google Scholar 

  25. 25.

    C.A. Bolme, S.D. McGrane, D.S. Moore, and D.J. Funk: Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry. J. Appl. Phys. 102, 033513 (2007).

    Article  Google Scholar 

  26. 26.

    M.R. Armstrong, J.C. Crowhurst, S. Bastea, and J.M. Zaug: Observation of off-hugoniot shocked states with ultrafast time resolution, in Proceedings of the 14th International Detonation Symposium (Office of Naval Research, Arlington, VA, 2010), p. 435.

    Google Scholar 

  27. 27.

    T. Do, S.J. Splinter, C. Chen, and N.S. McIntyre: The oxidation kinetics of Mg and Al surfaces studied by AES and XPS. Surf. Sci. 387, 192 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    R.R. Wixom, A.S. Tappan, G.T. Long, A.M. Renlund, E.J. Welle, J.P. McDonald, B.H. Jared, A.L. Brundage, and J.R. Michael: Microenergetics: Characterization of sub-millimeter PETN films (35th International Pyrotechnics Seminar and Symposium, Ft. Collins, CO, 2008).

    Google Scholar 

  29. 29.

    R.R. Wixom, A.S. Tappan, A.L. Brundage, R. Knepper, M.B. Ritchey, J.R. Michael, and M.J. Rye: Characterization of pore morphology in molecular crystal explosives by focused ion-beam nanotomography. J. Mater. Res. 25, 1362 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    W.D. Nix and B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stress in thin films. J. Mater. Res. 14, 3467 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    G. Zhang, B. Weeks, R. Gee, and A. Maiti: Fractal growth in organic thin films: Experiments and modeling. Appl. Phys. Lett. 95, 204101 (2009).

    Article  Google Scholar 

  32. 32.

    M.D. Thouless: Combined buckling and cracking of films. J. Am. Ceram. Soc. 76, 2936 (1993).

    CAS  Article  Google Scholar 

  33. 33.

    G. Zhang, B.L. Weeks, and M. Holtz: Application of dynamic scaling to the surface properties of organic thin films: Energetic materials. Surf. Sci. 605, 463 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    A.C. Durr, F. Schreiber, K.A. Ritley, V. Kruppa, J. Krug, H. Dosch, and B. Struth: Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene). Phys. Rev. Lett. 90, 016104 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    S. Yim and T.S. Jones: Anomalous scaling behavior and surface roughening in molecular thin-film deposition. Phys. Rev. B 73, 161305 (2006).

    Article  Google Scholar 

  36. 36.

    X. Zhang, E. Barrena, D. Goswami, D.G. de Oteyza, C. Weis, and H. Dosch: Evidence for a layer-dependent Ehrlich-Schwobel barrier in organic thin film growth. Phys. Rev. Lett. 103, 136101 (2009).

    Article  Google Scholar 

  37. 37.

    P.D. Chinh: Elastic moduli of random aggregates of tetragonal crystals. Philos. Mag. A 82, 1713 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    J.M. Winey and Y.M. Gupta: Second-order elastic constants for pentaerythritol tetranitrate single crystals. J. Appl. Phys. 90, 1669 (2001).

    CAS  Article  Google Scholar 

Download references


The authors thank Michael P. Marquez and M. Barry Ritchey for their assistance with sample preparation and SEM imaging. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04- 94AL85000. Sandia’s Laboratory Directed Research and Development Program and the Joint Department of Defense/Department of Energy Munitions Technology Development Program supported this work.

Author information



Corresponding author

Correspondence to Robert Knepper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knepper, R., Tappan, A.S., Wixom, R.R. et al. Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate films. Journal of Materials Research 26, 1605–1613 (2011).

Download citation