Thermoelectric and structural properties of high-performance In-based skutterudites for high-temperature energy recovery


The temperature-dependent thermoelectric (TE) and structural properties of n-type filled skutterudites were measured from 300–625 K. In0.2Co4Sb12, and In0.2Ce0.05Yb0.1Co4Sb12 exhibited figure of merit (ZT) values as high as 1.2 at 625 K and In0.2Ce0.15Co4Sb12 showed ZT values of ∼1.4 at 625 K. The room temperature Young’s modulus, Poisson’s ratio, and coefficient of thermal expansion (at 298–673 K) of In0.2Ce0.15Co4Sb12, In0.2Co4Sb12, and In0.2Ce0.05Yb0.1Co4Sb12 compositions were found to be lower than that for the unfilled Co4Sb12 skutterudite material. It was discovered that thermal cycling of n-type In0.15Ce0.1Co4Sb12 and In0.2Ce0.17Co4Sb12 materials from 323–673 K (200 cycles) actually increased their power factors by 13.6–36% at 510–525 K without appreciably changing the Young’s modulus or the Poisson’s ratio. The transport and structural properties characterized in this work are critical to transitioning these materials into operating TE devices and systems.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    J. Androulakis, K.-F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, and M.G. Kanatzidis: Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m. Adv. Mater. 18(9), 1170 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder: Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    T. Caillat, J-P. Fleurial, and A. Borshchevsky: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58(7), 119 (1997).

    Article  Google Scholar 

  4. 4.

    E.A. Skrabek and D.S. Trimmer: Properties of the general TAGS system, Chap. 22, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press LLC, Boca Raton, FL, 1995).

    Google Scholar 

  5. 5.

    B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56(23), 15081 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Gelbstein, Z. Dashevsky, and M.P. Dariel: High performance n-type PbTe-based materials for thermoelectric applications. Physica B 363, 196 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Z.H. Dughaish: Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B 322, 205 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  9. 9.

    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Yu. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  10. 10.

    X. Tang, Q. Zhang, L. Chen, T. Goto, and T. Hirai: Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12.R: Ce, Ba, Y;M: Fe, Ni. J. Appl. Phys. 97, 093712 (2005).

    Article  Google Scholar 

  11. 11.

    K.-F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303(5659), 818 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    M. Zhou, J.-F. Li, and T. Kita: Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    T.M. Tritt and M.A. Subramanian: Thermoelectric materials, phenomena, and Applications: A bird’s eye view. MRS Bull. 31(3), 188 (2006).

    Article  Google Scholar 

  15. 15.

    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    T. He, J. Chen, H.D. Rosenfeld, and M.A. Subramanian: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Subramanian, T. He, and J. Krajewski: U.S. Patent No. 7,723,607 (E.I. du Pont de Nemours and Company, Filed Date: April 14, 2005; Issued: May 25, 2010).

  18. 18.

    H. Li, X. Tang, Q. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  19. 19.

    A. Migliori and J.L. Sarrao: Resonant Ultrasound Spectroscopy: Applications to Physics, Material Measurements, and Nondestructive Evaluation (John Wiley & Sons, New York, 1997).

    Google Scholar 

  20. 20.

    H. Li, X.F. Tang, Q.J. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ nanostructured InSb phase, in Proceedings of the 2010 International Conference on Thermoelectrics, Shanghai, China, June 2010.

  21. 21.

    J.W. Graff, J.Y. Peng, J. He, Z. Su, P.N. Alboni, S. Zhu, and T. Tritt: High temperature thermoelectric properties of Co4Sb12 based skutterudites with multiple filler: InxCeyYbz Co4Sb12, in Proceedings of the 2010 International Conference on Thermoelectrics, Shanghai, China, June 2010.

  22. 22.

    F. Ren, E.D. Case, J.R. Sootsman, M.G. Kanatzidis, H. Kong, C. Uher, E. Lara-Curzio, and R.M. Trejo: The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Mater. 56, 5954 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    N. Laws and J.R. Brockenbrough: The effect of micro-crack systems on the loss of stiffness of brittle solids. Int. J. Solids Struct. 23(9), 1247 (1987).

    Article  Google Scholar 

  24. 24.

    B. Budiansky and R.J. O’Connell: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81 (1976).

    Article  Google Scholar 

  25. 25.

    E.D. Case: The saturation of thermomechanical fatigue in brittle materials, in Thermomechanical Fatigue and Fracture (WIT Press, Southampton, UK, 2002), pp. 137–208.

    Google Scholar 

  26. 26.

    X. Shi, W. Zhang, L.D. Chen, J. Yang, and C. Uher: Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 75, 235208 (2007).

    Article  Google Scholar 

Download references


The authors sincerely thank the U.S. Department of Energy (DOE), Office of Vehicle Technology (OVT), Jerry Gibbs, Propulsion Materials Technology Manager, DOE-OVT, and John Fairbanks, Thermoelectric Technology Manager, DOE-OVT, for their support of this research and development.

Author information



Corresponding author

Correspondence to Terry J. Hendricks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biswas, K., Good, M.S., Roberts, K.C. et al. Thermoelectric and structural properties of high-performance In-based skutterudites for high-temperature energy recovery. Journal of Materials Research 26, 1827–1835 (2011).

Download citation