Microstructures and nanostructures in long-term annealed AgPb18SbTe20 (LAST-18) compounds and their influence on the thermoelectric properties


This article reports on the role of annealing on the development of microstructure and its concomitant effects on the thermoelectric properties of polycrystalline AgPbmSbTe2+m (m = 18, lead–antimony–silver–tellurium, LAST-18) compounds. The annealing temperature was varied by applying a gradient annealing method, where a 40-mm-long sample rod was heat treated in an axial temperature gradient spanning between 200 and 600 °C for 7 days. Transmission electron microscopy investigations revealed Ag2Te nanoparticles at a size of 20–250 nm in the matrix. A remarkable reduction in the thermal conductivity to as low as 0.8 W/mK was also recorded. The low thermal conductivity coupled with a large Seebeck coefficient of ∼320 μV/K led to high ZT of about 1.05 at 425 °C for the sample annealed at 505 °C. These results also demonstrate that samples annealed above 450 °C for long term are more thermally stable than those treated at lower temperatures.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.


  1. 1.

    L.E. Bell: Cooling, heating, generating power and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    H. Hachiuma and K. Fukuda: Activities and future vision of Komatsu thermo modules, in Proceedings of the Fifth European Conference on Thermoelectrics, Paper 01, September 10–12, 2007, p. 1.

  3. 3.

    M. Zhou, J-F. Li, and T. Kita: Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis: Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J. Am. Chem. Soc. 127, 9177 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    B.A. Cook, M.J. Kramer, J.L. Harringa, M-K. Han, D-Y. Chung, and M.G. Kanatzidis: Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials. Adv. Funct. Mater. 19, 1254 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    M. Kanatzidis: Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    A. Kosuga, M. Uno, K. Kurosaki, and S. Yamanaka: Thermoelectric properties of Ag1-xPb18SbTe20 (x = 0, 0.1, 0.3). J. Alloy. Comp. 387, 52 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    N. Chen, F. Gascoin, G.J. Snyder, E. Mueller, G. Karpinski, and C. Stiewe: Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x (PbTe)1-x. Appl. Phys. Lett. 87, 171903 (2005).

    Article  Google Scholar 

  11. 11.

    Y. Yan, X. Tang, H. Liu, L. Yin, and Q. Zhang: Cooling rate dependence of microstructure and thermoelectric properties of AgPb18SbTe20 compound, in Proceedings of the International Conference on Thermoelectrics, Jeju Island, Korea, 2007, pp. 61–63.

  12. 12.

    J. Sootsman, R. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis: Phase segregation and thermoelectric properties of AgPbmSbTe2+m (m = 2, 4, 6 and 8). Mater. Res. Soc. Symp. 886, 0886–F08-05.1 (2006).

  13. 13.

    J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis: Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater. 18, 4993 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    D.I. Bilc, S.D. Mahanti, and M.G. Kanatzidis: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006).

    Article  Google Scholar 

  15. 15.

    H. Hazama, U. Mizutani, and R. Asahi: First-principles calculations of Ag-Sb nanodot formation in thermoelectric AgPbmSbTe2+m (m = 6, 14, 30). Phys. Rev. B 73, 115108 (2006).

    Article  Google Scholar 

  16. 16.

    J. Rodriguez-Carvajal: FULLPROF: A program for Rietveld refinement and pattern matching analysis. Abs. Sat. Meet Powder Diff. XV Cong. IUCr, Toulouse, France, 1990, p. 127.

    Google Scholar 

  17. 17.

    A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, and R.G. Leisure: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B 183, 1 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    ANSYS Academic Research Release 11.0 Product Documentation, Help System, Thermal Analysis Guide, Chapter 2. Steady State Thermal Analysis (ANSYS, Inc., 2007), p. 11.

  19. 19.

    W. Gierlotka, J. Eapsa, and K. Fitzner: Thermodynamic description of the Ag–Pb–Te ternary system. J. Phase Equilib. Diffus. 31, 509 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    G.W. Henger and E.A. Peretti: Constitution diagram for the PbTe-Sb system. J. Chem. Eng. Data 10, 16 (1965).

    CAS  Article  Google Scholar 

  21. 21.

    B-Z. Lee, C-S. Oh, and D.N. Lee: A thermodynamic evaluation of the Ag–Pb–Sb system. J. Alloy. Comp. 215, 293 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    M.K. Sharov: Silver solubility in PbTe crystals. Inorg. Mater. 44, 569 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    H.S. Dow, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, and D.M. Wee: Effect of Ag or Sb additions on the thermoelectric properties of PbTe. J. Appl. Phys. 108, 113709 (2010).

    Article  Google Scholar 

  24. 24.

    R. Blachnik and B. Gather: Mischungen von GeTe, SnTe und PbTe mit Ag2Te–Ein Beitrag zur Klärung der Konstitution der ternären Ag-IVb-Te Systeme (IVb = Ge, Sn, Pb). J. Less-Common Met. 60, 25 (1987).

    Article  Google Scholar 

  25. 25.

    J.D. Sugar and D.L. Medlin: Precipitation of Ag2Te in the thermoelectric material AgSbTe2. J. Alloy. Comp. 478, 75 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    T. Ikeda, V.A. Ravi, and G.J. Snyder: Microstructure size control through cooling rate in thermoelectric PbTe–Sb2Te3 composites. Metall. Mater. Trans. A 41, 641 (2010).

    Article  Google Scholar 

  27. 27.

    R.G. Maier: Zur Kenntnis des Systems PbTe–AgSbTe2. Z. Metallk. 54, 311 (1963).

    CAS  Google Scholar 

  28. 28.

    S.V. Barabash, V. Ozolins, and C. Wolverton: First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTe2+m alloys. Phys. Rev. Lett. 101, 155704 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    K. Wada, A. Suzuki, H. Sato, and R. Kikuchi: Soret effect in solids. J. Phys. Chem. Solids 46, 1195 (1985).

    CAS  Article  Google Scholar 

  30. 30.

    C. Manolikas: A study by means of electron microscopy and electron diffraction of the phase transformation and the domain structure in Ag2Te. J. Solid State Chem. 66, 1 (1987).

    CAS  Article  Google Scholar 

  31. 31.

    J.L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin: Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J. Alloy. Comp. 504, 37 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    V.D. Das and D. Karunakaran: Thickness dependence of the phase transition temperature in Ag2Te thin films. J. Phys. Chem. Solids 46, 551 (1985).

    CAS  Article  Google Scholar 

  33. 33.

    F.F. Aliev: Electrical and thermoelectric properties of p-Ag2Te in the β phase. Semiconductors 37, 1057 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    F. Ren, E.D. Case, J.E. Ni, E.J. Timm, E. Lara-Curzio, R.M. Trejo, C.H. Lin, and M.G. Kanatzidis: Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos. Mag. Lett. 89, 143 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    R.S. Allgaier and W.W. Scanlon: Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 °K. Phys. Rev. 111, 1029 (1958).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder: High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv. Funct. Mater. 21, 241 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    A.J. Strauss: Effect of Pb- and Te-saturation on carrier concentrations in impurity-doped PbTe. J. Electron. Mater. 2, 553 (1973).

    CAS  Article  Google Scholar 

  38. 38.

    D.M. Rowe: Thermoelectrics Handbook, 2nd ed. (CRC Press, Taylor & Francis Group, USA, 2006), pp. 1–16.

    Google Scholar 

Download references


The authors thank the Federal Ministry for Education and Research (BMBF), Germany “Werkstofftechnologien von morgen—Wissenschaftliche Vorprojekte in Werkstoff—und Nanotechnologien,” for funding this research study (03X3540A). Raphael Hermann acknowledges the Helmholtz-Gemeinschaft Deutscher Forschungszentren for funding of the Young Investigator Group “Lattice dynamics in emerging functional materials.” The authors also thank Dr. Peter Werner for his valuable contribution in HRTEM investigations performed at Max Planck Institute, Halle, Germany.

Author information



Corresponding author

Correspondence to Jayaram Dadda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dadda, J., Müller, E., Perlt, S. et al. Microstructures and nanostructures in long-term annealed AgPb18SbTe20 (LAST-18) compounds and their influence on the thermoelectric properties. Journal of Materials Research 26, 1800–1812 (2011). https://doi.org/10.1557/jmr.2011.142

Download citation