Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries


Nickel oxide–polypyrrole (NiO–PPy) composites for lithium-ion batteries were prepared by a chemical polymerization method with sodium p-toluenesulfonate as the dopant, Triton-X as the surfactant, and FeCl3 as the oxidant. The new composite material was characterized by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy, and field-emission scanning electron microscopy. Nanosize conducting PPy particles with a cauliflower-like morphology were uniformly coated onto the surface of the NiO powder. The electrochemical results were improved for the NiO–PPy composite compared with the pristine NiO. After 30 cycles, the capacities of the NiO and the NiO–PPy composite were about 119 and 436 mAh·g−1, respectively, indicating that the electrochemical performance of the composite was significantly improved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Table I


  1. 1.

    P.L. Taberna, S. Mitra, P. Poizot, P. Simon, and J.M. Tarascon: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    B. Varghese, M.V. Reddy, Y. Zhu, S.L. Chang, C.H. Teo, G.V. Subba Rao, B.V.R. Chowdari, Andrew Thye Shen Wee, T.L. Chwee, and C.H. Sow: Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20(10), 3360 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    G.X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H.K. Liu, and S.X. Dou: Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 109, 142 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    S.L. Chou, J.Z. Wang, H.K. Liu, and S.X. Dou: Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors. J. Electrochem. Soc. 155, A926 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).

    CAS  Google Scholar 

  6. 6.

    W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, and L.J. Wan: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    H. Qiao, L. Xiao, Z. Zheng, H. Liu, F. Jia, and L. Zhang: One-pot synthesis CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J. Power Sources 185, 486 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    I.A. Courtney, W.R. McKinnon, and J.R. Dahn: On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J. Electrochem. Soc. 146, 59 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, and H.M. Wu: Spherical NiO-C composite for anode material of lithium ion batteries. Electrochim. Acta. 52, 4177 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov, and H.K. Liu: Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J. Power Sources 174, 1183 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, and H.K. Liu: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45, 6896 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, and J.Y. Xiang: Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem. Commun. 10, 1288 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    S.Y. Chew, Z.P. Guo, J.Z. Wang, J. Chen, P. Munroe, S.H. Ng, L. Zhao, and H.K. Liu: Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for rechargeable lithium battery. Electrochem. Commun. 9, 1877 (2007).

    Article  Google Scholar 

  14. 14.

    J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G.X. Wang, Z.P. Guo, and H.K. Liu: Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta. 51, 4634 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    G.X. Wang, L. Yang, Y. Chen, J.Z. Wang, S. Bewlay, and H.K. Liu: An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim. Acta. 50, 4649 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    A. Du Pasquier, F. Orsini, A.S. Gozdz, and J.M. Tarascon: Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region. J. Power Sources 81, 607 (1999).

    Article  Google Scholar 

  17. 17.

    Z.P. Guo, J.Z. Wang, H.K. Liu, and S.X. Dou: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources 146, 448 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Y.C. Liu, B.J. Hwang, W.J. Jian, and R. Santhanan: In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: Studies on the doping-undoping of polypyrrole film. Thin Solid Films 374, 85 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    C. Zhong, J.Z. Wang, S.L. Chou, K. Konstantinov, M. Rahman, and H.K. Liu: Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. J. Appl. Electrochem. 40, 1415 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    K. Nishio, M. Fujimoto, O. Ando, H. Ono, and T. Murayama: Characteristics of polypyrrole chemically synthesized by various oxidizing reagents. J. Appl. Electrochem. 26, 425 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    M.M. Rahman, S.L. Chou, C. Zhong, J.Z. Wang, D. Wexler, and H.K. Liu: Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 180, 1646 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, L. Zhang, and Y. Zhou: Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries. J. Power Sources 188, 588 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J.M. Tarascon: Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 148, A285 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    X.H. Huang, J.P. Tu, C.Q. Zhang, and J.Y. Xiang: Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochem. Commun. 9, 1180 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    B. Veeraraghavan, J. Paul, B. Haran, and B. Popov: Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J. Power Sources 109, 377 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    S.H. Ng, J. Wang, K. Konstantinov, D. Wexler, J. Chen, and H.K. Liu: Spray pyrolyzed PbO-carbon nanocomposites as anode for lithium-ion batteries. J. Electrochem. Soc. 153, A787 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    J. Fan and P.S. Fedkiw: Electrochemical impedance spectra of full cells: Relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes. J. Power Sources 72, 165 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    K.E. Aifantis, S. Brutti, S.A. Hackney, T. Sarakonsri, and B. Scrosati: SnO2/C nanocomposites as anodes in secondary Li-ion batteries. Electrochim. Acta 55, 5071 (2010).

    CAS  Article  Google Scholar 

Download references


Financial support provided by the Australian Research Council (ARC) through ARC Centre of Excellence funding and an ARC Discovery Project (DP 0987805) is gratefully acknowledged. Nurul H. Idris acknowledges the Ministry of Higher Education of Malaysia for a PhD scholarship. Technical assistance on the SEM measurements provided by Mr. Darren Attard is highly appreciated. The authors also thank Dr. Tania Silver for critical reading of the manuscript.

Author information



Corresponding author

Correspondence to Jiazhao Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Idris, N.H., Wang, J., Chou, S. et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research 26, 860–866 (2011). https://doi.org/10.1557/jmr.2011.12

Download citation