Size-dependent strength in nanolaminate metallic systems

Abstract

The effect of layer thickness on the hardness of nanometallic material composites with both coherent and incoherent interfaces was investigated using nanoindentation. Then, atomistic simulations were performed to identify the critical deformation mechanisms and explain the macroscopic behavior of the materials under investigation. Nanocomposites of different individual layer thicknesses, ranging from 1–30 nm, were manufactured and tested in nanoindentation. The findings were compared to the stress–strain curves obtained by atomistic simulations. The results reveal the role of the individual layer thickness as the thicker structures exhibit somehow different behavior than the thinner ones. This difference is attributed to the motion of the dislocations inside the layers. However, in all cases the hybrid structure was the strongest, implying that a particular improvement to the mechanical properties of the coherent nanocomposites can be achieved by adding a body-centered cubic layer on top of a face-centered cubic bilayer.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

REFERENCES

  1. 1.

    A. Misra, M.J. Demkowicz, J. Wang, and R.G. Hoagland: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    R.G. Hoagland, R.J. Kurtz, and C.H. Henager Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    J. Wang, R.G. Hoagland, and A. Misra: Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scr. Mater. 60(12), 1067 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    A. Tokarz, T. Fraczek, Z. Balaga, and Z. Nitkiewicz: Structure, hardness and thermal stability of electrodeposited Cu/Ni nanostructured multilayers. Rev. Adv. Mater. Sci. 15(3), 247 (2007).

    CAS  Google Scholar 

  5. 5.

    A. Misra, H. Kung, D. Hammon, R.G. Hoagland, and M. Nastasi: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    A. Misra and R.G. Hoagland: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20(8), 2046 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    C.A. Schuh, T.G. Nieh, and T. Yamasaki: Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    H. Conrad and J. Narayan: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50(20), 5067 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    S. Yip: Nanocrystals—The strongest size. Nature 391(6667), 532 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    H.S. Kim, Y. Estrin, and M.B. Bush: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48(2), 493 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    Y.B. Wang, B.Q. Li, M.L. Sui, and S.X. Mao: Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 92(1), 011903 (2008).

    Article  Google Scholar 

  13. 13.

    W.D. Nix: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39(4/5), 545 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    F. Akasheh, H.M. Zbib, J.P. Hirth, R.G. Hoagland, and A. Misra: Dislocation dynamics analysis of dislocation intersections in nanoscale multilayer metallic composites. J. Appl. Phys. 101, 084314 (2007).

    Article  Google Scholar 

  15. 15.

    L.B. Freund: The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. Techol Phys. 54(3), 553 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82(4), 643 (2002).

    CAS  Google Scholar 

  17. 17.

    I.N. Mastorakos, H.M. Zbib, and D.F. Bahr: Deformation mechanisms and strength in metallic nanolaminate composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94 (17), 054117 (2009).

    Article  Google Scholar 

  18. 18.

    N.R. Overman, C.T. Overman, H.M. Zbib, and D.F. Bahr: Yield and deformation in biaxially stressed multilayer metallic thin films. J. Eng. Mater. Techol. 131(4), 041203 (2009).

    Article  Google Scholar 

  19. 19.

    I.N. Mastorakos, N. Abdolrahim, and H.M. Zbib: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).

    Article  Google Scholar 

  20. 20.

    S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), (1995).

    Google Scholar 

  21. 21.

    M. Daw and M. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).

    Article  Google Scholar 

  22. 22.

    A.F. Voter and S.P. Chen: Accurate Interatomic Potentials for Ni, Al and Ni3Al, in Characterization of Defects in Materials, edited by R.W. Siegel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.

    CAS  Google Scholar 

  23. 23.

    R.A. Johnson: Alloy models with the embedded atom method. Phys. Rev. B 39(17), 12554 (1989).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  25. 25.

    R.A. Johnson and D.J. Oh: Analytic embedded atom method model for bcc. J. Mater. Res. 4(5), 1195 (1989).

    CAS  Article  Google Scholar 

  26. 26.

    Q. Zhang, W.S. Lai, and B.X. Liu: Atomic structure and physical properties of Ni-Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261, 137 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    M.J. Demkowicz and R.G. Hoagland: Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    S. Melchionna, G. Ciccotti, and B.L. Holian: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993).

    CAS  Article  Google Scholar 

  29. 29.

    C.H. Henager Jr., R.J. Kuntz, and R.G. Hoagland: Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. 84(22), 2277 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    R.G. Hoagland, J.P. Hirth, and A. Misra: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86(23), 3537 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51(20), 6059 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    A. Misra, J.P. Hirth, and H. Kung: Single-dislocation-based strengthening mechanisms in nanoscale metalic multilayers. Philos. Mag. A 82(16), 2935 (2002).

    CAS  Article  Google Scholar 

  33. 33.

    L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 3232, 607 (2009).

    Article  Google Scholar 

  34. 34.

    K. Nyilas, A. Misra, and T. Ungar: Micro-strains in cold rolled Cu–Nb nanolayered composites determined by X-ray line profile analysis. Acta Mater. 54(3), 751 (2005).

    Article  Google Scholar 

  35. 35.

    N.A. Mara, D. Bhattacharyya, R.G. Hoagland, and A. Misra: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58(10), 874 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    A. Bellou, C.T. Overman, H.M. Zbib, D.F. Bahr, and A. Misra: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64, 641 (2011).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-07ER46435. The authors acknowledge R.G. Hoagland for many fruitful discussions and A. Misra and the Materials Science and Technology Division at Los Alamos National Laboratory for the manufacturing of the specimens.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis N. Mastorakos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mastorakos, I.N., Bellou, A., Bahr, D.F. et al. Size-dependent strength in nanolaminate metallic systems. Journal of Materials Research 26, 1179–1187 (2011). https://doi.org/10.1557/jmr.2011.120

Download citation