Threading defect elimination in GaN nanowires


This study describes the elimination of threading dislocations (TDs) in GaN nanostructures. Cross-sectional transmission electron microscopy (XTEM) analysis reveals that the nominal [0001] line direction of a TD changes when it enters a GaN nanostructure and the dislocation then terminates at a sidewall facet. It is suggested that the driving force for this process is the reduction of dislocation line energy, and for a pure-edge dislocation, this TD elimination process can be accomplished simply by dislocation climb. This mechanism is active whenever a threading defect is in close proximity to a surface. Preliminary XTEM analysis of defects in AlGaN and InGaN core–shell growth onto GaN nanostructures is also shown. Although more work is required to improve the quality of core–shell InGaN epitaxial growth, nanostructures appear to offer a route to defect-free, nonpolar GaN-based devices.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    S.D. Hersee, X.Y. Sun, and X. Wang: The controlled growth of GaN nanowires. Nano Lett. 6, 1808 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    J. Yoo, Y.-J. Hong, S.J. An, G.-C. Yi, B. Chon, T. Joo, J.-W. Kim, and J.-S. Lee: Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl. Phys. Lett. 89, 043124 (2006).

    Article  Google Scholar 

  3. 3.

    A. Talin, F. Leonard, B.S. Swartzentruber, X. Wang, and S.D. Hersee: Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 101, 076802 (2008).

    Article  Google Scholar 

  4. 4.

    A.A. Talin, B.S. Swartzentruber, F. Leonard, X. Wang, and S.D. Hersee: Electrical transport in GaN nanowires grown by selective epitaxy. J. Vac. Sci. Technol. B 27, 2040 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    unpublished work, paper in preparation.

  6. 6.

    K.L. Kavanagh: Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 25, 024006 (2010).

    Article  Google Scholar 

  7. 7.

    H.M. Kim: Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv. Mater. 15, 567 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    S.D. Hersee, M.N. Fairchild, A.K. Rishinaramangalam, M. Ferdous, L. Zhang, P. Varangis, B. Swartzentruber, and A.A. Talin: GaN nanowire light emitting diodes based on templated and scalable nanowire growth process. Electron. Lett. 45, 75 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa: InGaN/GaN nanocolumn LEDs emitting from blue to red. SPIE Proc. 6473, 64730T (2007).

    Article  Google Scholar 

  10. 10.

    M. Ferdous, X. Wang, M.N. Fairchild, and S.D. Hersee: Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 91, 231107 (2007).

    Article  Google Scholar 

  11. 11.

    T. Mukai, K. Takekawa, and S. Nakamura: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 37(Part 2), L839 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    S.R.J Brueck: Optical and interferometric lithography—Nanotechnology enablers. Proc. IEEE 93, 1704 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    M.S. Ferdous, X.Y. Sun, X. Wang, M.N. Fairchild, and S.D. Hersee: Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy. J. Appl. Phys. 99, 096105 (2006).

    Article  Google Scholar 

  14. 14.

    S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu: Structural characterization of GaN laterally overgrown on a (111) Si substrate. Appl. Phys. Lett. 79, 955 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    A. Béré and A. Serra: Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002).

    Article  Google Scholar 

  16. 16.

    J. Elsner, R. Jones, P.K. Sitch, V.D. Porezag, M. Elstner, Th. Frauenheim, M.I. Heggie, S. Öberg, and P.R. Briddon: Theory of threading edge and screw dislocations in GaN. Phys. Rev. Lett. 79, 3672 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    A.M. Yong, C.B. Soh, X.H. Zhang, S.Y. Chow, and S.J. Chua: Investigation of V-defects formation in InGaN/GaN multiple quantum well grown on sapphire. Thin Solid Films 515, 4496 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by the National Science Foundation Smart Lighting Engineering Research Center (No. EEC-0812056).

Author information



Corresponding author

Correspondence to Stephen D. Hersee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hersee, S.D., Rishinaramangalam, A.K., Fairchild, M.N. et al. Threading defect elimination in GaN nanowires. Journal of Materials Research 26, 2293–2298 (2011).

Download citation