Selective-area growth of III-V nanowires and their applications

Abstract

We review the position-controlled growth of III-V nanowires (NWs) by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE). This epitaxial technique enables the positioning of the vertical NWs on (111) oriented surfaces with lithographic techniques. Core-shell structures have also been achieved by controlling the growth mode during SA-MOVPE. The core-shell III-V NW-based devices such as light-emitting diodes, photovoltaic cells, and vertical surrounding-gate transistors are discussed in this article. Nanometer-scale growth also enabled the integration of III-V NWs on Si regardless of lattice mismatches. These demonstrated achievements should have broad applications in laser diodes, photodiodes, and high-electron mobility transistors with functionality on Si not made possible with conventional Si-CMOS techniques.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

References

  1. 1.

    K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi: Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, and R.J. Saykally: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  8. 8.

    K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G.P. Morgan: Quantum size microcrystals grown using organometallic vapor phase epitaxy. Appl. Phys. Lett. 59, 431 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallengerg, and L. Samuelson: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).

    Article  CAS  Google Scholar 

  10. 10.

    Z.X. Yan and A.G. Milnes: Deep level transient spectroscopy of silver and gold levels in LEC grown gallium arsenide. J. Electrochem. Soc. 129, 1353 (1982).

    CAS  Article  Google Scholar 

  11. 11.

    A.F.i. Morral, C. Colombo, G. Abstreiter, J. Arbiol, and J.R. Morante: Nucleation mechanism of gallium-assisted molecular-beam-epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    B. Mandl, J. Stangl, E. Hilner, A.A. Zakharov, K. Hilletich, A.W. Dey, L. Samuelson, G. Bauer, K. Deppert, and A. Mikkelsen: Growth mechanism of self-catalyzed group III-V nanowires. Nano Lett. 10, 4443 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    B.D. Joyce and J.A. Baldrey: Selective epitaxial deposition of silicon. Nature 195, 485 (1962).

    CAS  Article  Google Scholar 

  14. 14.

    F.W. Tausch and A.G. Lapierre: A novel crystal growth phenomenon: Single crystal GaAs overgrowth onto silicon dioxide. J. Electrochem. Soc. 112, 706 (1965).

    CAS  Article  Google Scholar 

  15. 15.

    P. Rai-Choudhury: Epitaxial gallium arsenide from trimethyl gallium and arsine. J. Electrochem. Soc. 116, 1745 (1969).

    CAS  Article  Google Scholar 

  16. 16.

    S.H. Jones and K.M. Lau: Selective area growth of high quality GaAs by OMCVD using native oxide masks. J. Electrochem. Soc. 134, 3149 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    T. Fukui and S. Ando: New GaAs quantum wires on <111>B facets by selective MOCVD. Electron. Lett. 25, 410 (1989).

    Article  Google Scholar 

  18. 18.

    T. Fukui, S. Ando, Y. Tokura, and T. Toriyama: GaAs tetrahedral quantum dot structure fabricated using selective area metalorganic chemical vapor deposition. Appl. Phys. Lett. 58, 2018 (1991).

    CAS  Article  Google Scholar 

  19. 19.

    K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui, and H. Hasegawa: Novel formation method of quantum dot structures by self-limited selective area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 34, 4387 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    F. Nakajima, Y. Miyoshi, J. Motohisa, and T. Fukui: Single-electron AND/NAND logic circuits based on a self-organized dot network. Appl. Phys. Lett. 83, 2680 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Miyoshi, F. Nakajima, J. Motohisa, and T. Fukui: A 1 bit binary-decision-diagram adder circuit using single-electron transistors made by selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 033501 (2005).

    Article  CAS  Google Scholar 

  22. 22.

    S. Ando, N. Kobayashi, and H. Ando: Selective area metalorganic chemical vapor deposition growth for hexagonal facet lasers. J. Cryst. Growth 145, 302 (1994).

    CAS  Article  Google Scholar 

  23. 23.

    T. Hamano, H. Hirayama, and Y. Aoyagi: New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy. Jpn. J. Appl. Phys. 36, L286 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui: Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 272, 180 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    J. Noborisaka, J. Motohisa, and T. Fukui: Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86, 213102 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    K. Ikejiri, J. Noborisaka, S. Hara, J. Motohisa, and T. Fukui: Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. J. Cryst. Growth 298, 616 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    K. Ikejiri, T. Sato, H. Yoshida, K. Hiruma, J. Motohisa, S. Hara, and T. Fukui: Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy. Nanotechnology 19, 265604 (2008).

    Article  CAS  Google Scholar 

  28. 28.

    P. Mohan, J. Motohisa, and T. Fukui: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Kitauchi, Y. Kobayashi, K. Tomioka, S. Hara, K. Hiruma, T. Fukui, and J. Motohisa: Structural transition in indium phosphide nanowires. Nano Lett. 10, 1699 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    K. Tomioka, P. Mohan, J. Noborisaka, S. Hara, J. Motohisa, and T. Fukui: Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    M. Akabori, K. Sladek, H. Hardtdegen, Th. Schäoers, and D. Grützmacher: Influence of growth temperature on the selective area MOVPE of InAs nanowries on GaAs(111)B using N2 carrier gas. J. Cryst. Growth 311, 3813 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    M. Akabori, J. Takeda, J. Motohisa, and T. Fukui: InGaAs nano-pillar array formation on partially masked InP(111)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application. Nanotechnology 14, 1071 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    T. Sato, J. Motohisa, J. Noborisaka, S. Hara, and T. Fukui: Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. J. Cryst. Growth 310, 2359 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    T. Sato, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui: SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement. J. Cryst. Growth 310, 5111 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    M. Yoshimura, K. Tomioka, K. Hiruma, S. Hara, J. Motohisa, and T. Fukui: Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 49, 04DH08 (2010).

    Google Scholar 

  36. 36.

    S. Fujisawa, T. Sato, S. Hara, J. Motohisa, K. Hiruma, and T. Fukui: Growth and characterization of a GaAs quantum well buried in GaAsP/GaAs vertical heterostructure nanowires by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 50, 04DH03 (2011).

    Article  Google Scholar 

  37. 37.

    H. Sekiguchi, K. Kishino, and A. Kikuchi: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010).

    Article  CAS  Google Scholar 

  38. 38.

    Y.-J. Kim, C.-H. Lee, Y.J. Hong, G.-C. Yi, S.S. Kim, and H. Cheong: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrate by a wet chemical method. Appl. Phys. Lett. 89, 163128 (2006).

    Article  CAS  Google Scholar 

  39. 39.

    J. Noborisaka, J. Motohisa, S. Hara, and T. Fukui: Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 093109 (2005).

    Article  CAS  Google Scholar 

  40. 40.

    P. Mohan, J. Motohisa, and T. Fukui: Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88, 013110 (2006).

    Article  CAS  Google Scholar 

  41. 41.

    B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui: Single GaAs/GaAsP coaxial core-shell nanowire laser. Nano Lett. 9, 112 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    P. Mohan, J. Motohisa, and T. Fukui: Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105 (2006).

    Article  CAS  Google Scholar 

  43. 43.

    L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui: Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence. Nanotechnology 18, 105302 (2007).

    Article  CAS  Google Scholar 

  44. 44.

    J.N. Shapiro, A. Lin, P.S. Wong, A.C. Scofield, C. Tu, P.N. Senanayake, G. Mariani, B.L. Liang, and D.L. Huffaker: InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97, 243102 (2010).

    Article  CAS  Google Scholar 

  45. 45.

    H. Sasakura, K. Humano, I. Suemune, J. Motohisa, Y. Kobayashi, M. van Kouwen, K. Tomioka, T. Fukui, N. Akopian, and V. Zwiller: Exciton coherence in clean single InP/InAsP/InP nanowire quantum dots emitting in infra-red measured by Fourier spectroscopy. J. Phys. Conf. Ser. 193, 012132 (2009).

    Article  CAS  Google Scholar 

  46. 46.

    A. Hayashida, T. Sato, S. Hara, J. Motohisa, K. Hiruma, and T. Fukui: Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires. J. Cryst. Growth 312, 3592 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee: Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 78, 3304 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    R.L. Dobrusin, R. Kotechy, and S. Shlosman: Wulff Construction: A Global Shape from Local Interactions. (American Mathematical Society, Providence, 1993).

    Google Scholar 

  49. 49.

    C.H. Li, Y. Sun, D.C. Law, S.B. Visbeck, and R.F. Hicks: Reconstructions of the InP(111)A surface. Phys. Rev. B 68, 085320 (2003).

    Article  CAS  Google Scholar 

  50. 50.

    D.K. Biegelsen, R.D. Bringans, J.E. Northrup, and L.-E. Swartz: Reconstructions of GaAs(-1-1-1) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990).

    CAS  Article  Google Scholar 

  51. 51.

    K. Tomioka, J. Motohisa, S. Hara, and T. Fukui: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui: Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 20, 145302 (2009).

    Article  CAS  Google Scholar 

  53. 53.

    K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui: III-V nanowires on Si substrate: Selective-area growth and device applications. IEEE J. Select. Top. Quantum Elec. Early access (2011).

    Google Scholar 

  54. 54.

    S. Hertenberger, D. Rudolph, M. Bichler, J.J. Findley, G. Abstreiter, and G. Koblmüller: Growth kinetics in position-controlled and catalyst-free InAs nanowrie arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010).

    Article  CAS  Google Scholar 

  55. 55.

    K. Sladek, V. Klinger, J. Wensorra, M. Akabori, H. Hardtdegen, and D. Grützmacher: MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires. J. Cryst. Growth 312, 65 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    B.J. Skromme, C.J. Sandroff, E. Yablonovitch, and T. Gmitter: Effects of passivation ionic films on the photoluminesnce properties of GaAs. Appl. Phys. Lett. 51, 2022 (1987).

    CAS  Article  Google Scholar 

  57. 57.

    M.T. Borgström, V. Zwiller, E. Muller, and A. Imamoglu: Optically bright quantum dots in single nanowire. Nano Lett. 5, 1439 (2005).

    Article  CAS  Google Scholar 

  58. 58.

    S.N. Dorenbos, H. Sasakura, M.P. van Kouwen, N. Akopian, S. Adachi, N. Namekata, M. Jo, J. Motohisa, Y. Kobayashi, K. Tomioka, T. Fukui, S. Inoue, H. Kumano, C.M. Natarajan, R.H. Hadfield, T. Zijlstra, T.M. Klapwijk, and I. Suemune: Position controlled nanowires for infrared single photon emission. Appl. Phys. Lett. 97, 171106 (2010).

    Article  CAS  Google Scholar 

  59. 59.

    H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui: Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Exp. 2, 035004 (2009).

    Article  CAS  Google Scholar 

  60. 60.

    A. Kikuchi, M. Kawai, M. Tada, and K. Kishino: InGaN/GaN multiple quantum disks nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 43, L1524 (2004).

    CAS  Article  Google Scholar 

  61. 61.

    F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C.M. Lieber: Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005).

    CAS  Article  Google Scholar 

  62. 62.

    K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    C.P.T Svensson, T. Martensson, J. Tragardh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson: Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechology 19, 305201 (2008).

    Article  CAS  Google Scholar 

  64. 64.

    L.C. Chuang, F.G. Sedgwick, R. Chen, W.S. Ko, M. Moewe, K.W. Ng, T.T. Tran, and C. C-Hasnain: GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. Nano Lett. 11, 385 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    S.J. An, J.H. Chae, G.-C. Yi, and G.H. Park: Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 92, 121108 (2008).

    Article  CAS  Google Scholar 

  66. 66.

    C.-H. Lee, J. Yoo, Y.J. Hong, J. Cho, Y.-J. Kim, S.-R. Jeon, J.H. Baek, and G.-C. Yi: GaN/In1-xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays. Appl. Phys. Lett. 94, 213101 (2009).

    Article  CAS  Google Scholar 

  67. 67.

    E. Lai, W. Kim, and P. Yang: Vertical nanowire array-based light emitting diodes. Nano Res. 1, 123 (2008).

    CAS  Article  Google Scholar 

  68. 68.

    H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo: InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010).

    Article  CAS  Google Scholar 

  69. 69.

    E.F. Schubert: Light-Emitting Diodes, 2nd ed (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  70. 70.

    S.K. Ray, M. Groom, H.Y. Liu, M. Hopkinson, and R.A. Hogg: Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells. Jpn. J. Appl. Phys. 45, 2542 (2006).

    CAS  Article  Google Scholar 

  71. 71.

    L. Hu and G. Chen: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007).

    CAS  Article  Google Scholar 

  72. 72.

    B.M. Kayes, H.A. Atwater, and N.S. Lewis: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cell. J. Appl. Phys. 97, 114302 (2005).

    Article  CAS  Google Scholar 

  73. 73.

    A. Kandala, T. Betti, and A.F.I Morral: General theoretical considerations on nanowire solar cell designs. Phys. Status Solidi A 206, 173 (2009).

    CAS  Article  Google Scholar 

  74. 74.

    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).

    CAS  Article  Google Scholar 

  75. 75.

    T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, and C.M. Lieber: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008).

    CAS  Article  Google Scholar 

  76. 76.

    M.D. Keizenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater: Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710 (2008).

    Article  CAS  Google Scholar 

  77. 77.

    C. Colombo, M. Heiß, M. Grätzel, and A.F.I Morral: Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).

    Article  CAS  Google Scholar 

  78. 78.

    W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang: Direct heteroepitaxy of vertical InAs nanowires on Si substrate for broad band photovoltaics and photodetection. Nano Lett. 9, 2926 (2009).

    CAS  Article  Google Scholar 

  79. 79.

    G. Mariani, R.B. Laghumavarapu, B.T. de Villers, J. Shapiro, P. Senanayake, A. Lin, B.J. Schwartz, and D.L. Huffaker: Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. Appl. Phys. Lett. 97, 013107 (2010).

    Article  CAS  Google Scholar 

  80. 80.

    M. Sugo, A. Yamamoto, M. Yamaguchi, and C. Uemura: High-efficiency InP solar cells with n+-p-p+ structure grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 24, 1243 (1985).

    CAS  Article  Google Scholar 

  81. 81.

    J. Xiang, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).

    CAS  Article  Google Scholar 

  82. 82.

    L. Zhang, R. Tu, and H. Dai: Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6, 2785 (2006).

    CAS  Article  Google Scholar 

  83. 83.

    J. Noborisaka, T. Sato, J. Motohisa, S. Hara, K. Tomioka, and T. Fukui: Electrical characterizations of InGaAs nanowire-top-gate field-effect transistors by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 46, 7562 (2007).

    CAS  Article  Google Scholar 

  84. 84.

    X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and C.M. Lieber: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007).

    CAS  Article  Google Scholar 

  85. 85.

    Q.-T. Do, K. Blekker, I. Regolin, W. Prost, and F.J. Tegude: High transconductance MISFET with a single InAs nanowire channel. IEEE Elec. Dev. Lett. 28, 682 (2007).

    CAS  Article  Google Scholar 

  86. 86.

    D. Yeom, K. Keem, J. Kang, D.Y. Jeong, C. Yoon, D. Kim, and S. Kim: NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al2O3 gate layers. Nanotechnology 19, 265502 (2008).

    Google Scholar 

  87. 87.

    H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247 (2004).

    CAS  Article  Google Scholar 

  88. 88.

    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2, 85 (2006).

    CAS  Article  Google Scholar 

  89. 89.

    C. Rehnstedt, T. Mårtensson, C. Thelander, L. Samuelson, and L.-E. Wernersson: Vertical InAs nanowire wrap gate transistors on Si substrate. IEEE Trans. Electron. Devices 55, 3037 (2008).

    CAS  Article  Google Scholar 

  90. 90.

    M.T. Björk, O. Hayden, H. Schmid, H. Riel, and W. Riess: Vertical surround-gate silicon nanowire impact ionization field-effect transistors. Appl. Phys. Lett. 90, 142110 (2007).

    Article  CAS  Google Scholar 

  91. 91.

    T. Tanaka, K. Tomioka, S. Hara, J. Motohisa, E. Sano, and T. Fukui: Vertical surrounding gate transistors using single InAs nanowires grown on Si substrate. Appl. Phys. Exp. 3, 025003 (2010).

    Article  CAS  Google Scholar 

  92. 92.

    M. Radosavljevic, G. Dewey, J.M. Fanstenau, J. Kavalieros, R. Kotlayer, B. Chu-Kung, W.K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and R. Chau: Non-planar, multi-gate InGaAs Quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic application. Abstract in 2010 Int. Elec. Dev. Meeting (IEDM) p. 6.1.1 (2010).

    Google Scholar 

  93. 93.

    M.T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess: Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008).

    Article  CAS  Google Scholar 

  94. 94.

    S.H. Kwon, J.H. Kang, C. Seassal, S.K. Kim, P. Regreny, Y.H. Lee, C.M. Lieber, and H.G. Park: Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679 (2010).

    CAS  Article  Google Scholar 

  95. 95.

    H. Im, N.C. Lindquist, A. Lesuffleur, and S.H. Oh: Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano. 4, 947 (2010).

    CAS  Article  Google Scholar 

  96. 96.

    M.T. Björk, H. Schmid, C.D. Bessire, K. E. Moselundm, H. Ghoneim, S. Karg, E. Lörtscher, and H. Riel: Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 97, 163501 (2010).

    Article  CAS  Google Scholar 

  97. 97.

    K. Tomioka and T. Fukui: Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 98, 083114 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Drs. Junichiro Takeda, Premila Mohan, Lin Yang, Ying Ding, Takuya Sato, and Mr. Masatoshi Yoshimura, Yasunori Kobayashi, Tomotaka Tanaka, and Hajime Goto. This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Science and Technology Agency (JST) PRESTO program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katsuhiro Tomioka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomioka, K., Ikejiri, K., Tanaka, T. et al. Selective-area growth of III-V nanowires and their applications. Journal of Materials Research 26, 2127–2141 (2011). https://doi.org/10.1557/jmr.2011.103

Download citation