Modeling of exact viscoelastic stresses in bilayer systems due to thermal and/or lattice mismatch: Maxwell model

Abstract

The exact solution of viscoelastic stresses in the bilayer system due to thermal and/or lattice mismatch is derived if both layers are Maxwell materials. When the thickness of one layer is much smaller than that of the other layer, the viscoelastic stresses in the bilayer system can be reduced to that of the thin film/substrate system. The relative film thickness and the position in the thin film/substrate systems are included in this solution. The average film stress decreases with increasing the normalized time and finally approaches zero in a long time. As the relative film thickness is equal to or less than 0.001, the average film stresses of the zeroth-order approximation, first-order approximation, and Hsueh and Lee model [J. Appl. Phys.91, 2760 (2002)] are close to that of exact solution. Nevertheless, as the relative film thickness is larger than 0.001, the accuracies of the zeroth-order approximation, first-order approximation, and Hsueh and Lee model are dependent on the normalized time and relative film thickness.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

REFERENCES

  1. 1.

    S.M. Sze: Physics of Semiconductor Devices (Wiley, New York, 1969).

    Google Scholar 

  2. 2.

    S.A. Maranowski, F.A. Kish, S.J. Caracci, N. Holonyak Jr., J.M. Dallesasse, D.P. Bour, and D.W. Treat: Native-oxide defined In0.5(AlxGa1-x)0.5P quantum well heterostructure window lasers (660 nm). Appl. Phys. Lett. 61, 1688 (1992).

    Article  Google Scholar 

  3. 3.

    C.H. Hsueh and A.G. Evans: Residual stresses in metal/ceramic bonded strips. J. Am. Ceram. Soc. 68, 241 (1985).

    CAS  Article  Google Scholar 

  4. 4.

    P.H. Townsend, D.M. Barnett, and T.A. Brunner: Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. J. Appl. Phys. 62, 4438 (1987).

    Article  Google Scholar 

  5. 5.

    C.H. Hsueh: Some considerations of determination of residual stresses and Young’s moduli in ceramic coatings. J. Am. Ceram. Soc. 74, 1646 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    T.-J. Chuang and S. Lee: Elastic flexure of bilayered beams subject to strain differentials. J. Mater. Res. 15, 2780 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    S.T. Shiue, H.C. Lin, T.Y. Shen, and H. Ouyang: Residual stress measurement in carbon coatings of optical fibers from the fiber bending curvature and coating thickness difference. Appl. Phys. Lett. 86, 251910 (2005).

    Article  Google Scholar 

  8. 8.

    E.P. EerNisse: Viscous flow of thermal SiO2. Appl. Phys. Lett. 30, 290 (1977).

    CAS  Article  Google Scholar 

  9. 9.

    H.C. Liu and S.P. Muraka: Elastic and viscoelastic analysis of stress in thin films. J. Appl. Phys. 72, 3458 (1992).

    CAS  Article  Google Scholar 

  10. 10.

    C.A. Volkert: Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    C.A. Volkert: Density changes and viscous flow during structural relaxation of amorphous silicon. J. Appl. Phys. 74, 7107 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    S. Isomae, M. Nanba, Y. Tamaki, and M. Maki: Creep curve of silicon wafers. Appl. Phys. Lett. 30, 564 (1997).

    Article  Google Scholar 

  13. 13.

    S.E. Rosenberg, P.Y. Wong, and I.N. Miaoulis: A theoretical study of the effect of thermal annealing on curvature changes in multilayered structures. Thin Solid Films 269, 64 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    C.H. Hsueh and S. Lee: Effects of viscous flow on residual stresses in film/substrate systems. J. Appl. Phys. 91, 2760 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    S.C. Ko, S. Lee, and C.H. Hsueh: Viscoelastic stress relaxation in film/substrate systems—Kelvin model. J. Appl. Phys. 93, 2453 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu: Residual stress relaxation in the film/substrate system due to creep deformation. J. Appl. Phys. 101, 083530 (2007).

    Article  Google Scholar 

  17. 17.

    Q.Q. Chen, F.Z. Xuan, and S.T. Tu: Residual stress analysis in the film/substrate system with the effect of creep deformation. J. Appl. Phys. 106, 033512 (2009).

    Article  Google Scholar 

  18. 18.

    H.C. Hsueh, D. Chiang, and S. Lee: Modeling of relaxation of viscoelastic stresses in multi-layered thin films/substrate systems due to thermal mismatch. Thin Solid Films 518, 7497 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    C.H. Hsueh: Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys. 91, 9652 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    A. Witvrouw, C.A. Volkert, and F. Spaepen: The viscosity of amorphous metallic thin films. Mater. Sci. Eng., A 134, 1274 (1991).

    Article  Google Scholar 

  21. 21.

    O.B. Loopstra, E.R. van Snek, T.H. de Keijser, and E.J. Mittemeijer: Model for stress and volume changes of a thin film on a substrate upon annealing: Application to amorphous Mo/Si multilayers. Phys. Rev. B 44, 13519 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    S.M. Hu: Stress-related problems in silicon technology. J. Appl. Phys. (Berl.) 70, R53 (1991).

    CAS  Article  Google Scholar 

  23. 23.

    S.E. Rosenberg, C.G. Madras, P.Y. Wong, and I.N. Miaoulis: The viscosity of germanium during substrate relaxation upon thermal anneal. J. Mater. Res. 12, 1706 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    C.C. Li and S.B. Desu: Processing of PbTiO3 thin films. II. In situ investigation of stress relaxation. J. Vac. Sci. Technol., A 14, 7 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    V. Senez, D. Collard, and B. Baccus: Analysis and application of a viscoelastic model for silicon oxidation. J. Appl. Phys. 76, 3285 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    P. Sutardja and W.G. Oldham: Modeling of stress effects in silicon oxidation. IEEE Trans. Electron. Dev. 36, 2415 (1989).

    CAS  Article  Google Scholar 

  27. 27.

    W. Flugge: Viscoelasticity, 2nd ed. (Springer, Berlin, Germany, 1975).

    Book  Google Scholar 

  28. 28.

    I.H. Shames and F.A. Cozzarelli: Elastic and Inelastic Stress Analysis (Prentice Hall, Englewood Cliffs, NJ, 1992).

    Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by National Science Council, Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanboh Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsueh, HC., Chiang, D. & Lee, S. Modeling of exact viscoelastic stresses in bilayer systems due to thermal and/or lattice mismatch: Maxwell model. Journal of Materials Research 26, 1392–1398 (2011). https://doi.org/10.1557/jmr.2011.100

Download citation