Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity

Abstract

Tin dioxide (SnO2) is an important base material for a variety of gas sensors and catalysts. However, there is a lack of experimental data on the energetics of SnO2 surfaces and their water adsorption. In this work, the surface energies of anhydrous and hydrated SnO2 nanoparticles were measured by combining high-temperature oxide melt solution calorimetry and water adsorption calorimetry. The SnO2 nanoparticles were synthesized through oxidation of metallic tin using nitric acid followed by heat treatment at different temperatures to achieve surface areas ranging from 4000 to 10,000 m2·mol−1(25–65 m2·g−1). The enthalpy of the anhydrous surface is 1.72 ± 0.01 J·m−2, and that of the hydrated surface is 1.49 ± 0.01 J·m−2. The integral heat of water adsorption is −75 kJ·mol−1, with a chemisorbed maximum coverage of ∼5 H2O·nm−2. SnO2 has a lower surface energy and less exothermic enthalpy of water adsorption than the isostructural TiO2 (rutile) reported previously. This comparison suggests that the excellent sensing properties of SnO2 may be a consequence of its relatively low affinity for surface H2O molecules that compete with other gases for adsorption.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table II
Table III
Table IV

References

  1. 1.

    N. Barsan, M. Schweizer-Berberich, and W. Gopel: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365, 287 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    M. Batzill and U. Diebold: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    M. Batzill: Surface science studies of gas sensing materials: SnO2. Sensors. 6, 1345 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    M.E. Franke, T.J. Koplin, and U. Simon: Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?Small. 2, 36 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    J. Huang and Q. Wan: Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors. 9, 9903 (2009).

    Article  Google Scholar 

  6. 6.

    S. Basu and P.K. Basu: Nanocrystalline metal oxides for methane sensors: Role of noble metals. J. Sens. 2009, 861968 (2009).

    Google Scholar 

  7. 7.

    J. Zhang, X.H. Liu, S.H. Wu, M.J. Xu, X.Z. Guo, and S.R. Wang: Au nanoparticle-decorated porous SnO2 hollow spheres: A new model for a chemical sensor. J. Mater. Chem. 20, 6453 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    L.H. Qian, K. Wang, Y. Li, H.T. Fang, Q.H. Lu, and X.L. Ma: CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys. 100, 82 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    M. Epifani, J. Arbiol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, and J.R. Morante: Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals: A case study of a general methodology for doping metal oxide nanocrystals. Cryst. Growth Des. 8, 1774 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    J.W. Gong, Q.F. Chen, M.R. Lian, N.C. Liu, R.G. Stevenson, and F. Adami: Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators, B 114, 32 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits: Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    X.H. Kong and Y.D. Li: High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators, B 105, 449 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    G. Oldfield, T. Ung, and P. Mulvaney: Au@SnO2 core-shell nanocapacitors. Adv. Mater. 12, 1519 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    U.S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe: Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sens. Actuators, B 107, 397 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    R.H.R. Castro, P. Hidalgo, H.E.M. Perez, F.J. Ramirez-Fernandez, and D. Gouvea: Relationship between surface segregation and rapid propane electrical response in Cd-doped SnO2 nanornaterials. Sens. Actuators, B 133, 263 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    P. Hidalgo, R.H.R. Castro, A.C.V. Coelho, and D. Gouvea: Surface segregation and consequent SO2 sensor response in SnO2-NiO. Chem. Mater. 17, 4149 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    J.F. Boyle and K.A. Jones: Effect of CO, water-vapor and surface-temperature on conductivity of a SnO2 gas sensor. J. Electron. Mater. 6, 717 (1977).

    CAS  Article  Google Scholar 

  18. 18.

    P.A. Mulheran and J.H. Harding: The stability of SnO2 surfaces. Modell. Simul.Mater. Sci. Eng. 1, 39 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    J. Oviedo and M.J. Gillan: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 463, 93 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Yamaguchi, K. Tabata, and T. Yashima: First-principles calculations on the surface electronic and reactive properties of M/SnO2 (M = Ge, Mn) (110). J. Mol. Struct. 714, 221 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    R.A. Evarestov, A.V. Bandura, and E.V. Proskurov: Plain DFT and hybrid HF-DFT LCAO calculations of SnO2 (110) and (100) bare and hydroxylated surfaces. Phys. Status Solidi. 243, 1823 (2006) (b).

    CAS  Article  Google Scholar 

  22. 22.

    M. Batzill, U. Diebold, W. Bergermayer, and I. Tanaka: Tuning the chemical functionality of a gas sensitive material: Water adsorption on SnO2(101). Surf. Sci. 600, 29 (2006).

    Article  Google Scholar 

  23. 23.

    P. Zhang, F. Xu, A. Navrotsky, J.S. Lee, S.T. Kim, and J. Liu: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    A.A. Levchenko, G.S. Li, J. Boerio-Goates, B.F. Woodfield, and A. Navrotsky: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    W. Zhou, S.V. Ushakov, T. Wang, J.G. Ekerdt, A.A. Demkov, and A. Navrotsky: Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107, 123514 (2010).

    Article  Google Scholar 

  26. 26.

    A.V. Radha, O. Bomati-Miguel, S.V. Ushakov, A. Navrotsky, and P. Tartaj: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    A. Navrotsky: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).

    CAS  Article  Google Scholar 

  28. 28.

    A. Navrotsky: Progress and new directions in high-temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    S.V. Ushakov and A. Navrotsky: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 (2005).

    Article  Google Scholar 

  30. 30.

    G.C.C. Costa, S.V. Ushakov, R.H.R. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22, 2937 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    R.A. Robie and B.S. Hemingway: Thermodynamic properties of minerals and related substrate at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. U.S. Geol. Surv. Bull. 2131, 461 (1995).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy Grant DE-FG02-05ER15667. The authors acknowledge the assistance of S.V. Ushakov, A.V. Radha, and D. Wu for their help. R. Castro acknowledges UC Davis for start-up funds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, Y., Castro, R.H.R., Zhou, W. et al. Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. Journal of Materials Research 26, 848–853 (2011). https://doi.org/10.1557/jmr.2010.97

Download citation