Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys

Abstract

Even though the crystal structure of lead telluride (PbTe) has been extensively studied for many years, we discovered that the structure has a strong tendency to form Pb-depleted disks on 001 planes. These disks are around 2–5 nm in diameter and less than 0.5 nm in thickness, with a volume density of around 9 × 1017 cm−3, resulting in lattice strain fields (3–20 nm) on both sides of the disks along their normal directions. Moreover, such disks were also observed in Pb-rich Pb1.3Te, Pb-deficient PbTe1.3, and thallium (Tl)-doped Tl0.01Pb0.99Te and Tl0.02Pb0.98Te crystals. Because of the effects of diffraction contrast imaging by transmission electron microscopy and orientations of the crystals, these native lattice strain fields were incorrectly recognized as precipitates or nanoinclusions in PbTe-based materials. This discovery provides new insight into the formation mechanism of the precipitates or nanoinclusions in PbTe-based materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    D. Greig: Thermoelectricity and thermal conductivity in the lead sulfide group of semiconductors. Phys. Rev. 120, 358 (1960).

    CAS  Article  Google Scholar 

  2. 2.

    H.A. Lyden: Temperature dependence of the effective masses in PbTe. Phys. Rev. 135, A514 (1964).

    Article  Google Scholar 

  3. 3.

    G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    M.G. Kanatzidis: Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    P.F.P. Poudeu, J.D. Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis: High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angew. Chem. Int. Ed. 45, 3835 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    M. Zhou, J.-F. Li, and T. Kita: Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    M. Muhlberg and D. Hesse: TEM precipitation studies in Te-rich as-grown PbTe single crystals. Phys. Status Solidi A Appl. Res. 76, 513 (1983).

    Article  Google Scholar 

  9. 9.

    W.W. Scanlon: Precipitation of Te and Pb in PbTe crystals. Phys. Rev. 126, 509 (1962).

    CAS  Article  Google Scholar 

  10. 10.

    G.Y. Wang, T.S. Shi, and S.Y. Zhang: Microdefects in Te-rich PbTe bulk crystal. Chin. Phys. Lett. 12, 469 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    H. Wang, J.-F. Li, and T. Kita: Thermoelectric enhancement at low temperature in nonstoichiometric lead-telluride compounds. J. Phys. D Appl. Phys. 40, 6839 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero: Impurity and vacancy states in PbTe. J. Appl. Phys. 47, 1721 (1976).

    CAS  Article  Google Scholar 

  13. 13.

    X.Z. Ke, C.F. Chen, J.H. Yang, L.J. Wu, J. Zhou, Q. Li, Y.M. Zhu, and P.R.C. Kent: Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 103, 145502 (2009).

    Article  Google Scholar 

  14. 14.

    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  17. 17.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy (Springer, New York, 1996), Vol. 3, p. 417.

    Google Scholar 

  18. 18.

    M.P. Gomez, D.A. Stevenson, and R.A. Huggins: Self-diffusion of Pb and Te in lead telluride. J. Phys. Chem. Solids. 32, 335 (1971).

    CAS  Article  Google Scholar 

  19. 19.

    T.D. George and J.B. Wagner: Tracer diffusion of lead in lead telluride. J. Appl. Phys. 42, 220 (1971).

    CAS  Article  Google Scholar 

  20. 20.

    S.J. Pennycook: Atomic-scale imaging of materials by Z-contrast scanning transmission electron microscopy. Anal. Chem. 64(4), 263 (1992).

    Article  Google Scholar 

  21. 21.

    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 321, 554 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    J.Q. He, A. Gueguen, J.R. Sootsman, J.-C. Zheng, L.J. Wu, Y.M. Zhu, M.G. Kanatzidis, and V.P. Dravid: Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials. J. Am. Chem. Soc. 131, 17828 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.Y. Chung, and M.G. Kanatzidis: Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials. Adv. Funct. Mater. 19, 1254 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-FG02-08ER46516 (G.C. and Z.F.R.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Zhang, Q., Yu, B. et al. Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys. Journal of Materials Research 26, 912–916 (2011). https://doi.org/10.1557/jmr.2010.96

Download citation