Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy


The microstructure characteristics of nanocrystalline magnesium-based alloy processed by cryomilling and spark plasma sintering were investigated. The as-received and cryomilled powders and the consolidated bulk material were characterized by scanning and transmission electron microscopies, x-ray diffraction, and electron dispersive spectroscopy techniques. The cryomilled powders resulted in an average grain size of 25 nm. After spark plasma sintering, a bimodal grain size distribution with coarse grains around 500 nm and fine grains of 52 nm, which is one of the smallest grain sizes reported in bulk nanostructured Mg alloys, was found. Our results suggest this novel process as a viable method to provide new opportunities for the development of nanostructured Mg-based alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    H. Gleiter, J. Weissmuller, O. Wollersheim, and R. Wurschum: Nanocrystalline materials: A way to solids with tunable electronic structures and properties. Acta Mater. 49, 737 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Champion, C. Langlois, S. Guerin-Mailly, P. Langlois, J.-L. Bonnentien, and M.J. Hytch: Near-perfect elastoplasticity in pure nanocrystalline copper. Science. 11(300), 310 (2003).

    Article  Google Scholar 

  3. 3.

    G. Konstantatos and E.H. Sargent: Nanostructured materials for photon detection. Nat. Nanotechnol. doi:10.1038/nnano.2010.78 (2010).

    Google Scholar 

  4. 4.

    T. Spassov, V. Rangelova, and N. Neykov: Nanocrystallization and hydrogen storage in rapidly solidified Mg–Ni–RE alloys. J. Alloy. Comp. 334, 219 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    T. Laha, A. Agarwal, T. McKechnie, K. Rea, and S. Seal: Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique. Acta Mater. 53, 5429 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    L.P. Bicelli, B. Bozzini, C. Mele, and L. D’Urzo: A Review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 3, 356 (2008).

    CAS  Google Scholar 

  7. 7.

    C.S. Park, J.W. Lee, G.T. Park, H.E. Kima, and J.J. Choi: Microstructural evolution and piezoelectric properties of thick Pb(Zr, Ti)O3 films deposited by multi-sputtering method: Part I. Microstructural evolution. J. Mater. Res. 22, 1367 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Review: Processing of metals by equal channel angular pressing. J. Mater. Sci. 36, 2835 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    C.C. Koch: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct. Mater. 2, 109 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    B.W. Chua, L. Lu, and M.O. Lai: Deformation behaviour of ultrafine and nanosize-grained Mg alloy synthesized via mechanical alloying. Philos. Mag. 86, 2919 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    M.A. Thein, L. Lu, and M.O. Lai: Kinetics of grain growth in nanocrystalline magnesium-based metal–metal composite synthesized by mechanical alloying. Comput. Sci. Technol. 66, 531 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Fecht: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6, 33 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    E.J. Lavernia, B.Q. Han, and J.M. Schoenung: Cryomilled nanostructured materials: Processing and properties. Mater. Sci. Eng. A 493, 207 (2008).

    Article  Google Scholar 

  15. 15.

    C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32, 2335 (2001).

    Article  Google Scholar 

  17. 17.

    F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 51, 2777 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    B.Q. Han, E.J. Lavernia, and F.A. Mohamed: Tension and compression of bulk Al-7.5 wt% Mg alloy. Philos. Mag. Lett. 83, 89 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, and F.A. Mohamed: Mechanical properties of an ultrafine-grained Al-7.5 pct Mg alloy. Metall. Mater. Trans. A 34, 603 (2003).

    Article  Google Scholar 

  20. 20.

    J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung: A tri-modal aluminum based composite with super-high strength. Scr. Mater. 53, 481 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Y.S. Park, K.H. Chung, N.J. Kim, and E.J. Lavernia: Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng. A 374, 211 (2004).

    Article  Google Scholar 

  22. 22.

    D.B. Witkin and E. Lavernia: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 1 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Xun, E.J. Lavernia, and F.A. Mohamed: Synthesis of nanocrystalline Zn-22 Pct Al using cryomilling. Metall. Mater. Trans. 35A, 573 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    M.D. Riktor, S. Deledda, M. Herrich, O. Gutfleisch, H. Fjellvåg, and B.C. Hauback: Hydride formation in ball-milled and cryomilled Mg–Fe powder mixtures. Mater. Sci. Eng. B 158, 19 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    O. Ertorer, A. Zúñiga, T. Topping, W. Moss, and E.J. Lavernia: Mechanical behavior of cryomilled CP-Ti consolidated via quasi-isostatic forging. Metall. Mater. Trans. 40A, 91 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    C.W. Su, L. Lu, and M.O. Lai: A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies. Mater. Sci. Eng. A 434, 227 (2006).

    Article  Google Scholar 

  27. 27.

    K. Matsubara, Y. Miyahara, Z. Horita, and T.G. Langdon: Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation. Metall. Mater. Trans. 35A, 1735 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    M.T. Pérez-Prado, J.A. del Valle, J.M. Contreras, and O.A. Ruano: Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scr. Mater. 50, 661 (2004).

    Article  Google Scholar 

  29. 29.

    M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano: Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scr. Mater. 51, 1093 (2004).

    Article  Google Scholar 

  30. 30.

    R. Chaim, Z. Shen, and M. Nygren: Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J. Mater. Res. 19, 2527 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    J. Ye, L. Ajdelsztajn, and J.M. Schoenung: Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: Cryomilling and spark plasma sintering. Metal. Mater. Trans. 37A, 2569 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    M. Schoenitz and E. Dreizin: Structure and properties of Al–Mg mechanical alloys. J. Mater. Res. 18, 1827 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    R.E. Reed-Hill and W.D. Robertson: Additional modes of deformation twinning in magnesium. Acta Metall. 5, 717 (1957).

    CAS  Article  Google Scholar 

  34. 34.

    Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    T.T. Sasaki, T. Ohkubo, and K. Hono: Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3529 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    M.J. Zehetbauer and Y.T. Zhu: Bulk Nanostructured Materials (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  38. 38.

    B.Q. Han, Z. Lee, D. Witkin, S. Nutt, and E.J. Lavernia: Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall. Mater. Trans. 36A, 957 (2005).

    CAS  Article  Google Scholar 

Download references


The authors express their appreciation to the Army Research Office (ARO) for financial support of this work under the ARO Contract No. W911NF-09-1-0558. They are particularly grateful to the ARO program manager, Dr. Larry Russell. They are also grateful to the anonymous referees for their insightful remarks that helped to improve the scientific quality of the original manuscript.

Author information



Corresponding author

Correspondence to Marta Pozuelo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pozuelo, M., Melnyk, C., Kao, W.H. et al. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy. Journal of Materials Research 26, 904–911 (2011).

Download citation