Skip to main content
Log in

Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tungsten nanoparticles (W-NPs) with average sizes ranging between 30 and 80 nm were prepared by thermolytic decomposition of tungsten hexacarbonyl in presence of a mixture of surfactants, oleic acid and oleyl amine. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy (XPS) results reveal that the surfactants oleic acid and oleyl amine bonded to the surface of W-NP through their functional groups, which in turn render stability to the nanopowders with respect to coarsening or aggregation. XPS results also confirm that carbon is present only at the surface of the W-NPs. The as-synthesized W-NPs were amorphous, and on heat treatment at 600 °C for 1 h, the amorphous powders transform into a body-centered cubic crystalline form (α-W).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.-X. Bao and B.-F. Wan: The tungsten powder study of the dispenser cathode. Appl. Surf. Sci. 252, 5873 (2006).

    Article  CAS  Google Scholar 

  2. C. Selcuk and J.V. Wood: Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170, 471 (2005).

    Article  CAS  Google Scholar 

  3. S.J. Bless, K. Tarcza, R. Chau, E. Taleff, and C. Persad: Dynamic fracture of tungsten heavy alloys. Int. J. Impact Eng. 33, 100 (2006).

    Article  Google Scholar 

  4. T. Ryu, H.Y. Sohn, K.S. Hwang, and Z.S. Fang: Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int. J. Refract. Met. Hard Mater. 27, 149 (2009).

    Article  CAS  Google Scholar 

  5. S.K. Samanta, W.J. Yoo, G. Samudra, E.S. Tok, L.K. Bera, and N. Balasubramanian: Tungsten nanocrystals embedded in high-k materials for memory application. Appl. Phys. Lett. 87, 113110 (2005).

    Article  Google Scholar 

  6. G.S. Chen, L.C. Yang, H.S. Tian, and C.S. Hsu: Evaluating substrate bias on the phase-forming behavior of tungsten thin films deposited by diode and ionized magnetron sputtering. Thin Solid Films 484, 83 (2005).

    Article  CAS  Google Scholar 

  7. K. Bouziane, M. Mamor, and F. Meyer: DC magnetron sputtered tungsten: W film properties and electrical properties of W/Si Schottky diodes. Appl. Phys. A Mater. Sci. Process. 81, 209 (2005).

    Article  CAS  Google Scholar 

  8. P. Villain, P. Goudeau, J. Ligot, S. Benayoun, K.F. Badawi, and J.J. Hantzpergue: X-ray diffraction study of residual stresses and microstructure in tungsten thin films sputter deposited on polyimide. J. Vac. Sci. Technol. A 21, 967 (2003).

    Article  CAS  Google Scholar 

  9. S.M. Rossnagel, I.C. Noyan, and C. Cabral: Phase transformation of thin sputter-deposited tungsten films at room temperature. J. Vac. Sci. Technol. B 20, 2047 (2002).

    Article  CAS  Google Scholar 

  10. M.X. Liu, Y.L. Huang, F. Ma, and K.W. Xu: Template-induced formation of α-W and size-dependent properties of tungsten thin films. Mater. Sci. Eng. B 139, 99 (2007).

    Article  CAS  Google Scholar 

  11. R.M. German, J. Ma, X. Wang, and E. Olevsky: Processing model for tungsten powders and extension to nanoscale size range. Powder Metall. 49, 19 (2006).

    Article  CAS  Google Scholar 

  12. R. Malewar, K.S. Kumar, B.S. Murty, B. Sarma, and S.K. Pabi: On sinterability of nanostructured W produced by high-energy ball milling. J. Mater. Res. 22, 1200 (2007).

    Article  CAS  Google Scholar 

  13. M.H. Magnusson, K. Deppert, and J-O. Malm: Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. J. Mater. Res. 15, 1564 (2000).

    Article  CAS  Google Scholar 

  14. A. Gromov, Y.S. Kwon, and P.P. Choi: Interaction of tungsten nanopowders with air under different conditions. Scr. Mater. 52, 375 (2005).

    Article  CAS  Google Scholar 

  15. R. Ricceri and P. Matteazzi: A study of formation of nanometric W by room temperature mechanosynthesis. J. Alloy. Comp. 358, 71 (2003).

    Article  CAS  Google Scholar 

  16. H.H. Nersisyan, J.H. Lee, and C.W. Won: A study of tungsten nanopowder formation by self-propagation high-temperature synthesis. Combust. Flame 142, 241 (2005).

    Article  CAS  Google Scholar 

  17. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  18. R.L. Axelbaum, J.I. Huertas, C.R. Lottles, S. Hariprasad, and S.M.L. Sastry: Nano-phase W and W-Ti composite via gas-phase combustion synthesis. Mater. Manuf. Processes 11, 1043 (1996).

    Article  CAS  Google Scholar 

  19. Y.H. Chang, H.W. Wang, C.W. Chiu, D.S. Cheng, M.Y. Yen, and H.T. Chiu: Low-temperature synthesis of transition metal nanoparticles from metal complexes and organopolysilane oligomers. Chem. Mater. 14, 4334 (2002).

    Article  CAS  Google Scholar 

  20. Y. Gao, J. Zhao, Y. Zhu, S. Ma, X. Su, and Z. Wang: Wet chemical process of rod-like tungsten nano-powders with iron (II) as reductive agent. Mater. Lett. 60, 3903 (2006).

    Article  CAS  Google Scholar 

  21. N.J. Welham: Room temperature reduction of scheelite (CaWO4). J. Mater. Res. 14, 619 (1999).

    Article  CAS  Google Scholar 

  22. P.K. Sahoo, S.S.K. Kamal, M. Premkumar, T. Jagadeesh Kumar, B. Sreedhar, A.K. Singh, S.K. Srivastava, and K. Chandra Sekhar: Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. Hard. Mater. 27, 784 (2009).

    Article  CAS  Google Scholar 

  23. K.K. Esumi, T. Tano, K. Torigoe, and K. Meguro: Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 2, 564 (1990).

    Article  CAS  Google Scholar 

  24. L. Yan and L. Jie: Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13, 1008 (2001).

    Article  Google Scholar 

  25. N. Shukla, C. Liu, P.M. Jones, and D. Weller: FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 226, 178 (2003).

    Article  Google Scholar 

  26. S. Nath, S. Praharaj, S. Panigrahi, S. Kundu, S.K. Ghosh, S. Basu, and T. Pal: Hexadecylamine capped silver organosol: A substrate for surface-enhanced Raman scattering. Colloids Surf. A Physicochem. Eng. Asp. 274, 145 (2006).

    Article  CAS  Google Scholar 

  27. N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, and V.P. Dravid: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 (2004).

    Article  CAS  Google Scholar 

  28. Z. Li, H. Chen, H. Bao, and M. Gao: One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16, 1391 (2004).

    Article  CAS  Google Scholar 

  29. P.V. Krasovskii, Yu.V. Blagoveshchenskii, and K.V. Grigorovich: Determination of oxygen in W-C-Co Nanopowders. Inorg. Mater. 44, 954 (2008).

    Article  CAS  Google Scholar 

  30. S.S.K. Kamal, P.K. Sahoo, J. Vimala, and L. Durai: Determination of oxygen and nitrogen in Ag nanoparticles: Role of surfactants. Adv. Sci. Lett. 3, 1 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Defence Research and Development Organisation, Ministry of Defence, Government of India, for financial support. We also thank the Director, Defence Metallurgical Research Laboratory (DMRL), and Division Head, Materials Science Division-II (MSD-II), for their keen interest in this work and also for permitting us to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Kumar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, P.K., Srinivas, S., Kamal, K. et al. Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route. Journal of Materials Research 26, 652–657 (2011). https://doi.org/10.1557/jmr.2010.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.76

Navigation