Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route


Tungsten nanoparticles (W-NPs) with average sizes ranging between 30 and 80 nm were prepared by thermolytic decomposition of tungsten hexacarbonyl in presence of a mixture of surfactants, oleic acid and oleyl amine. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy (XPS) results reveal that the surfactants oleic acid and oleyl amine bonded to the surface of W-NP through their functional groups, which in turn render stability to the nanopowders with respect to coarsening or aggregation. XPS results also confirm that carbon is present only at the surface of the W-NPs. The as-synthesized W-NPs were amorphous, and on heat treatment at 600 °C for 1 h, the amorphous powders transform into a body-centered cubic crystalline form (α-W).

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5


  1. 1.

    J.-X. Bao and B.-F. Wan: The tungsten powder study of the dispenser cathode. Appl. Surf. Sci. 252, 5873 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    C. Selcuk and J.V. Wood: Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170, 471 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    S.J. Bless, K. Tarcza, R. Chau, E. Taleff, and C. Persad: Dynamic fracture of tungsten heavy alloys. Int. J. Impact Eng. 33, 100 (2006).

    Article  Google Scholar 

  4. 4.

    T. Ryu, H.Y. Sohn, K.S. Hwang, and Z.S. Fang: Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int. J. Refract. Met. Hard Mater. 27, 149 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    S.K. Samanta, W.J. Yoo, G. Samudra, E.S. Tok, L.K. Bera, and N. Balasubramanian: Tungsten nanocrystals embedded in high-k materials for memory application. Appl. Phys. Lett. 87, 113110 (2005).

    Article  Google Scholar 

  6. 6.

    G.S. Chen, L.C. Yang, H.S. Tian, and C.S. Hsu: Evaluating substrate bias on the phase-forming behavior of tungsten thin films deposited by diode and ionized magnetron sputtering. Thin Solid Films 484, 83 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    K. Bouziane, M. Mamor, and F. Meyer: DC magnetron sputtered tungsten: W film properties and electrical properties of W/Si Schottky diodes. Appl. Phys. A Mater. Sci. Process. 81, 209 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    P. Villain, P. Goudeau, J. Ligot, S. Benayoun, K.F. Badawi, and J.J. Hantzpergue: X-ray diffraction study of residual stresses and microstructure in tungsten thin films sputter deposited on polyimide. J. Vac. Sci. Technol. A 21, 967 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    S.M. Rossnagel, I.C. Noyan, and C. Cabral: Phase transformation of thin sputter-deposited tungsten films at room temperature. J. Vac. Sci. Technol. B 20, 2047 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    M.X. Liu, Y.L. Huang, F. Ma, and K.W. Xu: Template-induced formation of α-W and size-dependent properties of tungsten thin films. Mater. Sci. Eng. B 139, 99 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    R.M. German, J. Ma, X. Wang, and E. Olevsky: Processing model for tungsten powders and extension to nanoscale size range. Powder Metall. 49, 19 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    R. Malewar, K.S. Kumar, B.S. Murty, B. Sarma, and S.K. Pabi: On sinterability of nanostructured W produced by high-energy ball milling. J. Mater. Res. 22, 1200 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    M.H. Magnusson, K. Deppert, and J-O. Malm: Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. J. Mater. Res. 15, 1564 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    A. Gromov, Y.S. Kwon, and P.P. Choi: Interaction of tungsten nanopowders with air under different conditions. Scr. Mater. 52, 375 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    R. Ricceri and P. Matteazzi: A study of formation of nanometric W by room temperature mechanosynthesis. J. Alloy. Comp. 358, 71 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    H.H. Nersisyan, J.H. Lee, and C.W. Won: A study of tungsten nanopowder formation by self-propagation high-temperature synthesis. Combust. Flame 142, 241 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    R.L. Axelbaum, J.I. Huertas, C.R. Lottles, S. Hariprasad, and S.M.L. Sastry: Nano-phase W and W-Ti composite via gas-phase combustion synthesis. Mater. Manuf. Processes 11, 1043 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    Y.H. Chang, H.W. Wang, C.W. Chiu, D.S. Cheng, M.Y. Yen, and H.T. Chiu: Low-temperature synthesis of transition metal nanoparticles from metal complexes and organopolysilane oligomers. Chem. Mater. 14, 4334 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Gao, J. Zhao, Y. Zhu, S. Ma, X. Su, and Z. Wang: Wet chemical process of rod-like tungsten nano-powders with iron (II) as reductive agent. Mater. Lett. 60, 3903 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    N.J. Welham: Room temperature reduction of scheelite (CaWO4). J. Mater. Res. 14, 619 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    P.K. Sahoo, S.S.K. Kamal, M. Premkumar, T. Jagadeesh Kumar, B. Sreedhar, A.K. Singh, S.K. Srivastava, and K. Chandra Sekhar: Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. Hard. Mater. 27, 784 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    K.K. Esumi, T. Tano, K. Torigoe, and K. Meguro: Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 2, 564 (1990).

    CAS  Article  Google Scholar 

  24. 24.

    L. Yan and L. Jie: Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13, 1008 (2001).

    Article  Google Scholar 

  25. 25.

    N. Shukla, C. Liu, P.M. Jones, and D. Weller: FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 226, 178 (2003).

    Article  Google Scholar 

  26. 26.

    S. Nath, S. Praharaj, S. Panigrahi, S. Kundu, S.K. Ghosh, S. Basu, and T. Pal: Hexadecylamine capped silver organosol: A substrate for surface-enhanced Raman scattering. Colloids Surf. A Physicochem. Eng. Asp. 274, 145 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, and V.P. Dravid: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Z. Li, H. Chen, H. Bao, and M. Gao: One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16, 1391 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    P.V. Krasovskii, Yu.V. Blagoveshchenskii, and K.V. Grigorovich: Determination of oxygen in W-C-Co Nanopowders. Inorg. Mater. 44, 954 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    S.S.K. Kamal, P.K. Sahoo, J. Vimala, and L. Durai: Determination of oxygen and nitrogen in Ag nanoparticles: Role of surfactants. Adv. Sci. Lett. 3, 1 (2010).

    Article  Google Scholar 

Download references


We thank Defence Research and Development Organisation, Ministry of Defence, Government of India, for financial support. We also thank the Director, Defence Metallurgical Research Laboratory (DMRL), and Division Head, Materials Science Division-II (MSD-II), for their keen interest in this work and also for permitting us to publish this work.

Author information



Corresponding author

Correspondence to Prasanta Kumar Sahoo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sahoo, P.K., Srinivas, S., Kamal, K. et al. Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route. Journal of Materials Research 26, 652–657 (2011).

Download citation