Room-temperature creep of nanoporous silica


We show that low-density nanoporous silica monoliths (aerogels), in contrast to the case of full-density silica, exhibit pronounced time-dependent deformation during indentation at room temperature. Logarithmic indentation creep and stress relaxation are revealed, with an exponential dependency of the creep constant on the applied stress. Such time-dependent deformation is attributed to stress corrosion fracture of nanoligaments that have a large surface-to-bulk atomic fraction.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.


  1. 1.

    R.W. Pekala, C.T. Alviso, and J.D. LeMay: Organic aerogels: Microstructural dependence of mechanical-properties in compression. J. Non-Cryst. Solids 125, 67 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    J. Gross, J. Fricke, R. Pekala, and L.W. Hrubesh: Elastic nonlinearity of aerogels. Phys. Rev. B 45, 12774 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    T. Woignier, J. Reynes, A.H. Alaoui, I. Beurroies, and J. Phalippou: Different kinds of structure in aerogels: Relationships with the mechanical properties. J. Non-Cryst. Solids 241, 45 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    M. Moner-Girona, A. Roig, E. Molins, E. Martinez, and J. Esteve: Micromechanical properties of silica aerogels. Appl. Phys. Lett. 75, 653 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    E.M. Lucas, M.S. Doescher, D.M. Ebenstein, K.J. Wahl, and D.R. Rolison: Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids. J. Non-Cryst. Solids 350, 244 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    S.O. Kucheyev, T.F. Baumann, C.A. Cox, Y.M. Wang, J.H. Satcher Jr., and A.V. Hamza: Nanoengineering mechanically robust aerogels via control of foam morphology. Appl. Phys. Lett. 89, 041911 (2006).

    Article  Google Scholar 

  7. 7.

    H. Fan, C. Hartshorn, T. Buchheit, D. Tallant, R. Assink, R. Simpson, D.J. Kissel, D.J. Lacks, S. Torquato, and C.J. Brinker: Modulus-density scaling behavior and framework architecture of nanoporous self-assembled silicas. Nat. Mater. 6, 418 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    A. Leonard, S. Blacher, M. Crine, and W. Jomaa: Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying. J. Non-Cryst. Solids 354, 831 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Worsley, S.O. Kucheyev, J.H. Satcher Jr., A.V. Hamza, and T.F. Baumann: Mechanically robust and electrically conductive carbon nanotube foams. Appl. Phys. Lett. 94, 073115 (2009).

    Article  Google Scholar 

  10. 10.

    S.O. Kucheyev, A.V. Hamza, J.H. Satcher Jr., and M.A. Worsley: Depth-sensing indentation of low-density brittle nanoporous solids. Acta Mater. 57, 3472 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    C.A. Angell: Perspective on the glass-transition. J. Phys. Chem. Solids 49, 863 (1988).

    CAS  Article  Google Scholar 

  12. 12.

    S.O. Kucheyev, M. Toth, T.F. Baumann, A.V. Hamza, J. Ilavsky, W.R. Knowles, C.K. Saw, B.L. Thiel, V. Tileli, T. van Buuren, Y.M. Wang, and T.M. Willey: Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering. Langmuir 23, 353 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    B. Abramoff and L.C. Klein: Elastic properties of silica xerogels. J. Am. Ceram. Soc. 73, 3466 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    D.R. Daughton, J. MacDonald, and N. Mulders: Acoustic properties of silica aerogels between 400 mK and 400 K. J. Non-Cryst. Solids 319, 297 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    S. Basu, M. Radovic, and M.W. Barsoum: Room temperature constant-stress creep of a brittle solid studied by spherical nanoindentation. J. Appl. Phys. 104, 063522 (2008).

    Article  Google Scholar 

  17. 17.

    E. Orowan: The fatigue of glass under stress. Nature 154, 341 (1944).

    Article  Google Scholar 

  18. 18.

    B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, MA, 1998).

    Google Scholar 

  19. 19.

    T.A. Michalske and S.W. Freiman: A molecular interpretation of stress-corrosion in silica. Nature 295, 511 (1982).

    CAS  Article  Google Scholar 

  20. 20.

    T.A. Michalske and B.C. Bunker: Slow fracture model based on strained silicate structures. J. Appl. Phys. 56, 2686 (1984).

    CAS  Article  Google Scholar 

  21. 21.

    S.O. Kucheyev, M.A. Worsley, J.H. Satcher Jr., A.V. Hamza, and T.F. Baumann (2009).

Download references


The authors thank J.H. Satcher, Jr. for providing the nanoporous silica monolith used in this study. This work was performed under the auspices of the U.S. Department of Energy (DOE) by LLNL under Contract DE-AC52-07NA27344.

Author information



Corresponding author

Correspondence to S.O. Kucheyev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kucheyev, S., Lord, K. & Hamza, A. Room-temperature creep of nanoporous silica. Journal of Materials Research 26, 781–784 (2011).

Download citation