Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering


N-type Bi2Te3 alloys with different micro structural length scales were prepared by mechanical milling and spark plasma sintering (SPS). The electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentration, and Hall mobility along and perpendicular to the loading direction were determined and characterized. The SPS sintered bulk disks using nanostructured powder contain high nanoporosity and weak (001) texture along the loading axis, in contrast to those obtained with coarse powder. The influence of nanoporosity and texture on the thermoelectric and transport properties in the n-type Bi2Te3 alloys is discussed in light of the microstructural characteristics at different length scales.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.


  1. 1.

    T.M. Tritt and M.A. Subramanian: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31(3), 188 (2006).

    Article  Google Scholar 

  2. 2.

    H. Scherrer and S. Scherrer: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  3. 3.

    O. Yamashita, S. Tomiyoshi, and K. Makita: Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 93(1), 368 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostruc-tured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    K. Park, J.H. Seo, D.C. Cho, B.H. Choi, and C.H. Lee: Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion. Mater. Sci. Eng., B 88(1), 103 (2002).

    Article  Google Scholar 

  7. 7.

    D. Perrin, M. Chitroub, S. Scherrer, and H. Scherrer: Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. J. Phys. Chem. Solids 61(10), 1687 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    A. Mukhopadhyay and B. Basu: Consolidation microstructure property relationships in bulk nanoceramics and ceramic nano-composites: A review. Int. Mater. Rev. 52(5), 257 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183 (2000).

    Article  Google Scholar 

  11. 11.

    V. Mamedov: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45(4), 322 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    H. Bottner, D.G. Ebling, A. Jacquot, J. Konig, L. Kirste, and J. Schmidt: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).

    Article  Google Scholar 

  14. 14.

    X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan: Characterization and thermoelectric properties of p-type 25%Bi2Te3-75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering. J. Phys. D:Appl. Phys. 39(4), 740 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    L. Chen, J. Jiang, and X. Shi: Thermoelectric performance of textured Bi2Te3-based sintered materials prepared by spark plasma sintering, in Thermoelectric Materials 2003; Research and Applications, edited by G.S. Nolas, J. Yang, T.P. Hogan, and D.C. Johnson (Mater. Res. Soc. Symp. Proc. 793, Warrendale, PA, 2004), S9.3, p. 365.

    CAS  Google Scholar 

  16. 16.

    F.B. Swinkels and M.F. Ashby: Overview II-A second report on sintering diagrams. Acta Metall. 29(2), 259 (1981).

    CAS  Article  Google Scholar 

  17. 17.

    H.V. Atkinson and S. Davies: Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 31(12), 2981 (2000).

    Article  Google Scholar 

  18. 18.

    E. Arzt, M.F. Ashby, and K.E. Easterling: Practical applications of hot-isostatic pressing diagrams-Four case studies. Metall. Trans. A 14(2), 211 (1983).

    CAS  Article  Google Scholar 

  19. 19.

    E.A. Olevsky, S. Kandukuri, and L. Froyen: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102(11), 114913 (2007).

    Article  Google Scholar 

  20. 20.

    E.A. Olevsky and L. Froyen: Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92(1), S122 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    L.A. Stanciu, V.Y. Kodash, and J.R. Groza: Effects of heating rate on densification and grain growth during field-assisted sintering of alpha-Al2O3 and MoSi2 powders. Metall. Mater. Trans. A 32(10), 2633 (2001).

    Article  Google Scholar 

  22. 22.

    F.K. Lotgering: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9(2), 113 (1959).

    CAS  Article  Google Scholar 

  23. 23.

    N. Gothard, X. Ji, J. He, and T.M. Tritta: Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites. J. Appl. Phys. 103(5), 054314 (2008).

    Article  Google Scholar 

  24. 24.

    J. Martin, L. Wang, L. Chen, and G.S. Nolas: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79(11), 115311 (2009).

    Article  Google Scholar 

  25. 25.

    K. Seeger: Semiconductor Physics: An Introduction. (Springer, Berlin, 2004).

    Google Scholar 

  26. 26.

    D.H. Kim and T. Mitani: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399(1–2), 14 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    J. Navratil, Z. Stary, and T. Plechacek: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31(12), 1559 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    J. Horak, K. Cermak, and L. Koudelka: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47(8), 805 (1986).

    CAS  Article  Google Scholar 

  29. 29.

    G.R. Miller and C.Y. Li: Evidence for existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26(1), 173 (1965).

    CAS  Article  Google Scholar 

  30. 30.

    L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, and W.S. Liu: Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B 400(1–2), 11 (2007).

    CAS  Google Scholar 

  31. 31.

    B. Masetti, M. Severi, and S. Solmi: Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron. Dev. 30(7), 764 (1983).

    Article  Google Scholar 

  32. 32.

    Q.Y. He, S.J. Hu, X. Tang, Y.C. Lan, J. Yang, X.W. Wang, Z.F. Ren, Q. Hao, and G. Chen: The great improvement effect of pores on ZT in Co1-xNi xSb3 system. Appl. Phys. Lett. 93(4), 042108 (2008).

    Article  Google Scholar 

  33. 33.

    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer: Thermal-properties of high-quality single-crystals of bismuth telluride. 1. Experimental characterization. J. Phys. Chem. Solids 49 (10), 1237 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zhihui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Z., Sharma, P.A., Lavernia, E.J. et al. Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. Journal of Materials Research 26, 475–484 (2011).

Download citation