Focused electron beam-induced deposition at cryogenic temperatures


Direct-write, cryogenic electron beam-induced deposition (EBID) was performed by condensing methylcyclopentadienyl-platinum-trimethyl precursor onto a substrate at -155°C, exposing the condensate by a 15 keV electron beam, and desorbing unexposed precursor molecules by heating the substrate to room temperature. Dependencies of film thickness, microstructure, and surface morphology on electron beam flux and fluence, and Monte Carlo simulations of electron interactions with the condensate are used to construct a model of cryogenic EBID that is contrasted to existing models of conventional, room temperature EBID. It is shown that material grown from a cryogenic condensate exhibits one of three distinct surface morphologies: a nanoporous mesh with a high surface-to-volume ratio; a smooth, continuous film analogous to material typically grown by room temperature EBID; or a film with a high degree of surface roughness, analogous to that of the cryogenic condensate. The surface morphology can be controlled reproducibly by the electron fluence used for exposure.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    W.F. van Dorp and C.W. Hagen: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 081301 (2008).

    Article  Google Scholar 

  2. 2.

    I. Utke, P. Hoffman, and J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technoi, B 26, 1197 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    A. Botman, J.J.L. Mulders, and C.W. Hagen: Creating pure nano-structures from electron-beam-induced-deposition using purification techniques: A technology perspective. Nanotechnology 20, 372001 (2008).

    Article  Google Scholar 

  4. 4.

    S.J. Randolph, J.D. Fowlkes, and P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31, 55 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    A. Botman, J.J.L. Mulders, R. Weemaes, and S. Mentink: Purification of platinum and gold structures after electron-beam-induced-deposition. Nanotechnology 15, 3779 (2006).

    Article  Google Scholar 

  6. 6.

    K. Molhave, D.N. Madsen, A.N. Rasmussen, A. Carlsson, C.C. Appel, M. Brorson, C.J.H. Jacobson, and P. Boggild: Solid gold nanostructures fabricated by electron beam deposition. Nano Lett. 3, 1499 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    D.A. Bell, J.L. Falconer, L. Zhiming, and C.M. McConica: Electron beam-induced deposition of tungsten. J. Vac. Sci. Technol, B 12, 2976 (1994).

    CAS  Article  Google Scholar 

  8. 8.

    H.O. Funsten, J.W. Boring, R.E. Johnson, and W.L. Brown: Low-temperature beam-induced deposition of thin tin films. J. Appl. Phys. 71, 1475 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Y.K. Park, T. Nagai, M. Takai, C. Lehrer, L. Frey, and H. Ryssel: Comparison of beam-induced deposition using ion microprobe. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 25 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    V. Gopal, E.A. Stach, V.R. Radmilovic, and L.A. Mowat: Metal derealization and surface decoration in direct-write nanolithography by electron beam induced deposition. Appl. Phys. Lett. 85,49 (2004).

  11. 11.

    P. Hovington, D. Drouin, and R. Gauvin: CASINO: A new Monte Carlo code in C language for electron beam interactions-Part I: Description of the program. Scanning 19, 1 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    I. Utke, V. Friedli, S. Amorosi, J. Michler, and P. Hoffman: Measurement and simulation of impinging precursor molecule distribution in focused particle beam deposition/etch systems. Microelectron. Eng. 83, 1499 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    L. Zaykova-Feldman and T.M. Moore: The total release method for FIB in situ TEM sample preparation. Microsc. Microanal. 11(suppl 2), 848 (2005).

    Google Scholar 

  14. 14.

    M. Toth and M.R. Philips: Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves. Scanning 20, 425 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Xue, M.J. Strouse, D.K. Shuh, C.B. Knobler, H.D. Kaesz, R.F. Hicks, and R.S. Williams: Characterization of (methylcyclopenta-dienyl)trimethylplatinum and low-temperature organometallic chemical vapor deposition of platinum metal. J. Am. Chem. Soc. 111, 8779 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. van Dorp, T.E. Madey, C.W. Hagen, and D.H. Fairbrother: Electron-induced surface reactions of the organometallic precursor trimethyl (methyl-cyclopentadienyl) platinum (IV). J. Phys. Chem. C 113, 2487 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    JCPDS card 04-08025.

  18. 18.

    S. Frabboni, G.C. Gazzadi, and A. Spessot: TEM study of the annealed Pt nanostructures grown by electron beam-induced deposition. Physica E 37, 265 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    H.W.P. Koops, A. Kaya, and M. Weber: Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition. J. Vac. Sci. Technol. B, 13, 2400 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    A. Botman, M. Hesselberth, and J.J.L. Mulders: Improving the conductivity of platinum-containing nano-structures created by electron-beam-induced deposition. Microelectron. Eng. 85, 1139 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    O. Yavas, C. Ochiai, M. Takai, A. Hosono, and S. Okuda: Maskless fabrication of field-emitter array by focused ion and electron beam. Appl. Phys. Lett. 76, 3319 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    W.F. van Dorp, J.D. Wnuk, J.M. Gorham, D.H. Fairbrother, T.E. Madey, and C.W. Hagen: Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV): Total cross section as a function of incident electron energy. J. Appl. Phys. 106, 074903 (2009).

    Article  Google Scholar 

  23. 23.

    A. Botman, D.A.M. de Winter, and J.J.L. Mulders: Electron-beam-induced deposition of platinum at low landing energies. J. Vac. Sci. Technol, B 26, 2460 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    C.J. Lobo, M. Toth, R. Wagner, B.L. Thiel, and M. Lysaght: High resolution radially symmetric nanostructures from simultaneous electron beam induced etching and deposition. Nanotechnology 19, 025303 (2008).

    Article  Google Scholar 

  25. 25.

    D.A. Smith, J.D. Fowlkes, and P.D. Rack: A nanoscale three-dimensional Monte Carlo simulation of electron-beam-induced deposition with gas dynamics. Nanotechnology 18, 265308 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    T.E. Everhart and P.H. Hoff: Determination of kilovolt electron energy dissipation vs penetration distance in solid materials. J. Appl. Phys. 42, 5837 (1971).

    CAS  Article  Google Scholar 

  27. 27.

    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Roming Jr., C.E. Lyman, C. Fiori, and E. Lifshin: Scanning Electron Microscopy and X-ray Microanalysis, 2nd ed. (Plenum, New York, 1992).

    Google Scholar 

  28. 28.

    J. Li, M. Toth, V. Tileli, K.A. Dunn, C.J. Lobo, and B.L. Thiel: Evolution of the nanostructure of deposits grown by electron beam induced deposition. Appl. Phys. Lett. 93, 023130 (2008).

    Article  Google Scholar 

  29. 29.

    A. Botman, C.W. Hagen, J. Li, B.L. Thiel, K.A. Dunn, J.J.L. Mulders, S. Randolph, and M. Toth: Electron post-irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4. J. Vac. Sci. Technol, B 27, 2759 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    J. Li, M. Toth, K.A. Dunn, R.L. Moore, and B.L. Thiel: Structure of Pt-containing nanocomposites grown by room temperature electron beam induced deposition. J. Appl. Phys. (in press).

  31. 31.

    L.R. Harriott, K.D. Cummings, M.E. Gross, and W.L. Brown: Decomposition of palladium acetate films with a microfocused ion beam. Appl. Phys. Lett. 49, 1661 (1986).

    CAS  Article  Google Scholar 

  32. 32.

    P. Hoffman, G. Ben Assayag, J. Gierak, J. Flicstein, M. Maar-Stumm, and H. van and den Bergh: Direct writing of gold nanostructures using a gold-cluster compound and a focused-ion beam. J. Appl. Phys. 74, 7588 (1993).

    Article  Google Scholar 

  33. 33.

    T.J. Stark, T.M. Mayer, D.P. Griffis, and P.E. Russell: Electron beam induced metallization of palladium acetate. J. Vac. Sci. Technol, B 9, 3475 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    J. Marques-Hueso, R. Abargues, J. Canet-Ferrer, S. Agouram, J.L. Valdes, and J.P. Martinez-Pastor: Au-PVA nanocomposite negative tone resist for one-step three-dimensional e-beam lithography. Langmuir 26, 2825 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    R. Abargues, J. Marques-Hueso, J. Canet-Ferrer, E. Pedrueza, J.L. Valdes, E. Jimenez, and J.P. Martinez-Pastor: High-resolution electron-beam patternable nanocomposite containing metal nano-particles for plasmonics. Nanotechnology 19, 355308 (2008).

    CAS  Article  Google Scholar 

Download references


The authors thank Juntao Li, Miguel Rodriguez, and Ruud van den Boom for assistance with the cryogenic setup and useful discussions.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bresin, M., Thiel, B.L., Toth, M. et al. Focused electron beam-induced deposition at cryogenic temperatures. Journal of Materials Research 26, 357–364 (2011).

Download citation