Evolution of constitution, structure, and mechanical properties in Fe-Ti-Zr-B heterogeneous multiphase composites


The constituent phases, the microstracture, and the mechanical properties of a series of Fe87-xTi7Zr6Bx (x = 0, 2, 4, 6, 8, 10, and 12) alloys produced by copper mold casting were investigated. Partial substitution of iron by boron in the Fe87Ti7Zr6 ultrafine eutectic alloy induces phase/microstructural evolution and simultaneously changes the mechanical properties. In the composition range of 2 ≤ x ≤ 6, the typical lamellar structure slightly changes into a spherical cellular-type eutectic. For 8 ≤ x ≤ 12, multiphase composites containing a glassy phase form. The ultrafine eutectic composites exhibit a high compressive strength of -2.9-3.1 GPa and a distinct plasticity of -2-8%, whereas the glassy matrix composites show a high strength of -3.1-3.3 GPa but no observable macroscopic plasticity before failure. These findings reveal that the plasticity of heterogeneous multiphase composites is strongly related to the length scale variables and the crystallinity of the constituent phases.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.


  1. 1.

    M.C. Flemings: Solidification Processing (McGraw-Hill, New York, 1974).

    Google Scholar 

  2. 2.

    M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystal-line metals. Acta Mater. 55, 4041 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    G. He, J. Eckert, W. Loser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: High strength Ni-Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031903 (2008).

    Article  Google Scholar 

  6. 6.

    J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, and G.L. Chen: Large plasticity and tensile necking of Zr-based bulk metallic glass matrix composites synthesized by the bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009).

    Article  Google Scholar 

  7. 7.

    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetrious, and W.L. Johnson: Designing bulk metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S. Pauly, S. Gorantla, G. Wang, U. K. Kühn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    D.V. Louzguine, H. Kato, L.V. Louzguina, and A. Inoue: High-strength binary Ti-Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    L. Shi, H. Ma, T. Liu, J. Xu, and E. Ma: Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys. J. Mater. Res. 21, 613 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    J.M. Park, N. Mattern, U. Kiihn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim: High strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J. Mater. Res. 24, 2605 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steel: Microstructure and Properties, 3rd ed. (Butterworth-Heinemann Press, Oxford, UK, 2006).

    Google Scholar 

  13. 13.

    B. Shen, H. Men, and A. Inoue: Fe-based bulk glassy alloy composite containing in situ formed α-(Fe, Co) and (Fe, Co)23B6 microcrystalline grains. Appl. Phys. Lett. 89, 101915 (2006).

    Article  Google Scholar 

  14. 14.

    S.F. Guo, L. Liu, N. Li, and Y. Li: Fe-based bulk metallic glass matrix composite with large plasticity. Scr. Mater. 62, 329 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    K. Werniewicz, U. Kiihn, N. Mattern, B. Bartusch, J. Eckert, J. Das, L. Schultz, and T. Kulik: New Fe-Cr-Mo-Ga-C composites with high compressive strength and large plasticity. Acta Mater. 55, 3513 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    R. Li, G. Liu, M. Stoica, and J. Eckert: FeCo-based multiphase composites with high strength and large plastic deformation. Intermetallics 18, 134 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim, and D.H. Kim: Nanostructure-dendrite composites in the Fe-Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.M. Park, K.B. Kim, M.H. Lee, W.T. Kim, J. Eckert, and D.H. Kim: High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    M.L. Lee, Y. Li, and C.A. Schuh: Effect of controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Mater. 52, 4121 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetrious, and W.L. Johnson: Development of tough, low density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A. 105, 20136 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Park, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: Propagation of shear bands and accommodation of shear strain in the Fe56Nb4Al40 ultrafine eutectic-dendrite composite. Appl. Phys. Lett. 92, 091910 (2008).

    Article  Google Scholar 

  22. 22.

    D.V. Louzguine, H. Kato, and A. Inoue: High-strength hypereu-tectic Ti-Fe-Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    C. Fan, R.T. Ott, and T.C. Hufnagel: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    J.M. Park, D.H. Kim, K.B. Kim, E. Fleury, M.H. Lee, W.T. Kim, and J. Eckert: Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomoge-neity. J. Mater. Res. 23, 2984 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    H. Ma, L.L. Shi, J. Xu, and E. Ma: Chill-cast in situ composites in the pseudo-ternary Mg-(Cu, Ni)-Y glass-forming system: Microstructure and compressive properties. J. Mater. Res. 22, 314 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    C.C. Hay, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 (2000).

    Article  Google Scholar 

  27. 27.

    J.M. Park: Mechanical behavior of bulk nano-/ultrafine structured composites. Ph.D. thesis, Yonsei University, Seoul, Korea, 2008.

    Google Scholar 

  28. 28.

    JCPDFWIN: Version 2.2 (JCPDS, International Center for Diffraction Data, Newton Square, PA, 2001).

  29. 29.

    H. Okamoto: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).

    Google Scholar 

  30. 30.

    J.M. Park, D.H. Kim, K.B. Kim, and W.T. Kim: Deformation-induced rotational eutectic colonies containing length-scale heterogeneity in an ultrafine eutectic Fe83Ti7Zr6B4 alloy. Appl. Phys. Lett. 91, 131907 (2007).

    Article  Google Scholar 

  31. 31.

    T.H. Courtney: Mechanical Behavior of Materials (McGraw-Hill, Boston, MA, 1998).

    Google Scholar 

  32. 32.

    J.H. Han, K.B. Kim, S. Yi, J.M. Park, D.H. Kim, S. Pauly, and J. Eckert: Influence of a bimodal eutectic structure on the plasticity of a (Ti70.5Fe29.5)9iSn9 ultrafine composite. Appl. Phys. Lett. 93, 201906 (2008).

    Article  Google Scholar 

  33. 33.

    D.V. Louzguine, L.V. Louzguina, H. Kato, and A. Inoue: Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005).

    Article  Google Scholar 

  34. 34.

    L. Fu, J. Yang, Q. Bi, and W. Liu: Enhanced ductility of dendrite-ultrafine eutectic composite Fe3B alloy prepared by self propagating high temperature synthesis. Adv. Eng. Mater. 11, 194 (2009).

    CAS  Article  Google Scholar 

Download references


This work was supported by Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD), and also supported by the Global Research Laboratory Program of Korea Ministry of Science and Technology, and by the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program of the Korea Ministry of Knowledge Economy. Stimulating discussions with A. Schlieter, E. Fleury, G. Wang, J.H. Han, M.H. Lee, O. Shuleshova, R. Li, S. Pauly, and W.T. Kim are gratefully acknowledged.

Author information



Additional information

This author was an editor of this journal during the review and decision stage. For the J MR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs. org/jmr_policy

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, J.M., Hyang Kim, D., Kim, K.B. et al. Evolution of constitution, structure, and mechanical properties in Fe-Ti-Zr-B heterogeneous multiphase composites. Journal of Materials Research 26, 365–371 (2011). https://doi.org/10.1557/jmr.2010.50

Download citation