On the root cause of Kirkendall voiding in Cu3Sn

Abstract

Soldering to Cu interconnect pads with Sn-containing alloys usually leads to the formation of a layered Cu3Sn/Cu6Sn5 structure on the pad/solder interface. Frequently, microscopic voids within Cu3Sn have been observed to develop during extended thermal aging. This phenomenon, commonly referred to as Kirkendall voiding, has been the subject of a number of studies and speculations but so far the root cause has remained unidentified. In the present work, 103 different Cu samples, consisting of 101 commercially electroplated Cu and two high-purity wrought Cu samples, were surveyed for voiding propensity. A high temperature anneal of the Cu samples before soldering was seen to significantly reduce the voiding level in subsequent thermal aging. For several void-prone Cu foils, the anneal led to significant pore formation inside the Cu. In the mean time, Cu grain growth in the void-prone foils showed impeded grain boundary mobility. Such behaviors suggested that the root cause for voiding is organic impurities incorporated in the Cu during electroplating, rather than the Kirkendall effect.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
FIG. 7.
FIG. 8.
TABLE II.
TABLE III.

References

  1. 1.

    P.J. Shang, Z.Q. Liu, D.X. Li, and J.K. Shang: Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints. Scr. Mater. 58, 409 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, and J.K. Shang: Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates. Acta Mater. 57, 4697 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    T. Chui, K. Zeng, R. Stierman, D. Edward, and K. Ano: Effect of thermal aging on board level drop reliability for Pb-free BGA packages, in Proceedings of the 54th Electronic Component and Technology Conference (IEEE, New York, 2004), p. 1256.

    Google Scholar 

  4. 4.

    K. Zeng, R. Stierman, T. Chui, D. Edward, K. Ano, and K.N. Tu: Kirkendall void formation in eutectic SnPb solder joint on bare Cu and its effect on joint. J. Appl. Phys. 97, 024508 (2005).

    Article  CAS  Google Scholar 

  5. 5.

    T. Mattila and J. Kivilahti: Reliability of lead-free interconnections under consecutive thermal and mechanical loadings. J. Electron. Mater. 35, 250 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    L. Xu, J. Pang, and F. Che: Impact of thermal cycling on Sn-Ag-Cu solder joints and board-level reliability. J. Electron. Mater. 37, 880 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    J. Yu and J. Kim: Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints. Acta Mater. 56, 5514 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    I.E. Anderson and J.L. Harringa: Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength. J. Electron. Mater. 33, 1485 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, and P.J. Ho: Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints. J. Appl. Phys. 100, 084909 (2006).

    Article  CAS  Google Scholar 

  10. 10.

    J.W. Nah, J.O. Suh, and K.N. Tu: Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect. J. Appl. Phys. 100, 123513 (2006).

    Article  CAS  Google Scholar 

  11. 11.

    Y.C. Liu, J.T. Chen, Y.C. Chuang, L. Ke, and S.J. Wang: Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints. Appl. Phys. Lett. 90, 112114 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    Y.S. Lai, Y.T. Chiu, and J. Chen: Electromigration reliability and morphologies of Cu pillar flip-chip solder joints with Cu substrate pad metallization. J. Electron. Mater. 37, 1624 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    B. Pieraggi, R.A. Rapp, F.J.J, van Loo, and J.P. Hirth: Interfacial dynamics in diffusion-driven phase transformations. Acta Metall. Mater. 38, 1781 (1990).

    CAS  Article  Google Scholar 

  14. 14.

    W. Yang, R.W. Messier, and L.E. Felton: Microstructure evolution of eutectic Sn-Ag solder joints. J. Electron. Mater. 23, 250 (1994).

    Google Scholar 

  15. 15.

    T. Laurila, V. Vuorinen, and J.K. Kivilahti: Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng., R 49, 1 (2005).

    Article  CAS  Google Scholar 

  16. 16.

    P.L. Liu and J.K. Shang: Segregant-induced cavitation of Sn/Cu reactive interface. Scr. Mater. 53, 631 (2005).

    Article  CAS  Google Scholar 

  17. 17.

    P. Borgesen, L. Yin, P. Kondos, D.W. Henderson, G. Servis, J. Therriault, J. Wang, and K. Srihari: Sporadic degradation in board level drop reliability—Those aren’t all Kirkendall voids, in Proceedings of the 57th Electronic Component and Technology Conference (IEEE, New York, 2007), p. 136.

    Google Scholar 

  18. 18.

    Y.W. Wang, Y.W. Lin, and C.R. Kao: Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Micro electron. Reliab. 49, 248 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    P. Kondos, P. Borgesen, and L. Yin and: Unpublished reports to AREA Consortium (2005).

    Google Scholar 

  20. 20.

    I.E. Anderson and J.L. Harringa: Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints. J. Electron. Mater. 35, 94 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    M.G. Cho, S.K. Kang, D.Y. Shih, and H.M. Lee: Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging. J. Electron. Mater. 36, 1501 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    F. Wang, Z. Yu, and K. Qi: Intermetallic compound formation at Sn-3.0Ag-0.5Cu-l.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions. J. Alloys Compd. 438, 110 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    C. Ho, S. Yang, and C. Kao: Interfacial reaction issues for lead-free electronic solders. J. Mater. Sci.-Mater. Electron. 18, 155 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    F. Gao, H. Nishikawa, and T. Takemoto: Additive effect of Kirkendall void formation in Sn-3.5Ag solder joints on common substrates. J. Electron. Mater. 37, 45 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    J.Y. Kim, J. Yu, and S.H. Kim: Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints. Acta Mater. 57, 5001 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    J.P. Chu, Y.Y. Hsieh, C.H. Lin, and T. Mahalingam: Thermal stability enhancement in nanostructured Cu films containing insoluble tungsten carbides for metallization. J. Mater. Res. 20, 1379 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    K. Barmak, A. Gungo, C. Cabral, and J.M.E. Haper: Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity. J. Appl. Phys. 94, 1605 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    P. Borgesen, L. Yin, and P. Kondos and: Acceleration of the growth of Cu3Sn voids in solder joints. Microelectron. Reliab. (in press).

  29. 29.

    M. Oh: Growth kinetics of intermetallic phases in the Cu-Sn binary and the Cu-Ni-Sn ternary systems at low temperatures. Ph.D. Thesis, Lehigh University, Bethlehem, PA, 1994.

    Google Scholar 

  30. 30.

    V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti: Solid-state reaction between Cu(Ni) alloys and Sn. J. Electron. Mater. 36, 1355 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    D.R. Lide: CRC Handbook for Chemistry and Physics, 84th ed. (CRC Press, Boca Raton, FL, 2003), pp. 12–219.

    Google Scholar 

  32. 32.

    F. Clark: Advanced Techniques in Powder Metallurgy (Rowman and Littefield, New York, 1963), pp. 80–87.

    Google Scholar 

  33. 33.

    C.V. Thompson: Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245 (1990).

    CAS  Article  Google Scholar 

  34. 34.

    H.D. Merchant: Defect structure of electrodeposits, in Defect Structure, Morphology and Properties of Deposits, edited by H.D. Merchant (The Minerals, Metals and Materials Society, Warrendale, PA, 1995), p. 1.

    Google Scholar 

  35. 35.

    R.M. German: Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ 1994), p. 242.

    Google Scholar 

  36. 36.

    S.H. Brongersma, E. Kerr, I. Vervoort, A. Saerens, and K. Maex: Grain growth, stress, and impurities in electroplated copper. J. Mater. Res. 17, 582 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    S.P. Hau-Riege and C.V. Thompson: In situ TEM studies of the kinetics of abnormal grain growth in electroplated copper films. Appl. Phys. Lett. 76, 309 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, and N. Dimitrov: Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface. J. Appl. Electrochem. 38, 1695 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    M. Onishi and H. Fujibuchi: Reaction-diffusion in the Cu-Sn system. Tran. Jpn. Inst. Met. 16, 539 (1975).

    CAS  Article  Google Scholar 

  40. 40.

    A. Paul: The Kirkendall effect in solid state diffusion. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004, p. 82.

    Google Scholar 

  41. 41.

    D.W. Henderson, P. Borgesen, L. Yin, and P. Kondos and: On the origins of “Kirkendall voiding” behavior in reactive interdiffusion couples. (In preparation).

  42. 42.

    T.P. Moffat, D. Wheeler, and D. Josell: Electrodeposition of copper in the SPS-PEG-C1 additive system I. Kinetic measurements: Influence of SPS. J. Electrochem. Soc. 151, C262 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    P.M. Vereecken, R.A. Binstead, H. Deligianni, and P.C. Andrica-cos: The chemistry of additives in damascene copper plating. IBM J. Res. Develop. 49, 3 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    T.P. Moffat, D. Wheeler, M.D. Edelstein, and D. Josell: Super-conformal film growth: Mechanism and quantification. IBM J. Res. Dev. 49, 19 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Z.D. Schultz, Z. Feng, M.E. Biggin, and A.A. Gewirth: Vibrational spectroscopic and mass spectrometric studies of the interaction of bis(3-sulfopropyl)-disulfide with Cu surfaces. J. Electrochem. Soc. 153, C97 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    M.J. Willey and A.C. West: SPS adsorption and desorption during copper electrodeposition and its impact on PEG adsorption. J. Electrochem. Soc. 154, C156 (2007).

    Article  CAS  Google Scholar 

  47. 47.

    M. Tan, C. Guymon, D.R. Wheeler, and J.N. Harb: The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. J. Electrochem. Soc. 154, D78 (2007).

    CAS  Article  Google Scholar 

  48. 48.

    F. Wafula, Y. Liu, L. Yin, S. Bliznakov, P. Borgesen, E.J. Cotts, and N. Dimitrov: Impact of key deposition parameters on the voiding sporadically occurring in solder joints with electroplated copper. J. Electrochem. Soc. 157, D111 (2009).

    Article  CAS  Google Scholar 

  49. 49.

    Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D.W. Henderson, C. Parks, J. Wang, E.J. Cotts, and N. Dimitrov: Improving copper electrodeposition in the microelectronics industry. IEEE Trans. Compon. Packag. Technol. 33, 127 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    L. Yin, N. Dimitrov, and P. Borgesen and: Kirkendall voiding and impurity incorporation in Cu electroplating. (In preparation).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liang Yin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, L., Borgesen, P. On the root cause of Kirkendall voiding in Cu3Sn. Journal of Materials Research 26, 455–466 (2011). https://doi.org/10.1557/jmr.2010.47

Download citation