Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance


Shape control of nanocrystals has become an indispensable part in material research, such as developing new battery raw materials and synthesizing high activity catalysts. In this work, one-dimensional LiV3O8 nanorods have been fabricated by high temperature solid-state reaction using V2O5 nanowires as precursors obtained via a hydrothermal method. The as-prepared LiV3O8 nanorods were characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and galvanostatic tests, compared with LiV3O8 samples synthesized by the traditional one-step solid-state method. The results show that LiV3O8 nanorods exhibited better electrochemical performance than those synthesized by the traditional method, indicating that a different shape will lead to huge distinctions in electrochemical properties. This work demonstrates that Li-insertion/deintercalation dynamics might be crystal morphology-sensitive.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    J.M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    X. Li, F. Cheng, B. Guo, and J. Chen: Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109, 14017 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    K. Kang, Y.S. Meng, J. Breger, C.P. Grey, and G. Ceder: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma: Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    F. Jiao, K.M. Shaju, and P.G. Bruce: Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 44, 6550 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    H. Chen and C.P. Grey: Molten salt synthesis and high rate performance of the “Desert-Rose” form of LiCoO2. Adv. Mater. 20, 2206 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    K.S. Lee, S.T. Myung, and Y.K. Sun: Synthesis and electrochemical performances of core-shell structured Li[(M1/3Co1/3 Mn1/3)o.8(Ni1/2Mn1/2)o.2]02 cathode material for lithium ion batteries. J. Power Sources 195, 6043 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    B. Kang and G. Ceder: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Hui, L. Juan, J.G. Zhang, and D.Z. Jia: Synthesis and properties of LiV3O8 nanomaterials as the cathode material for Li-ion battery. J. Inorg. Mater. 22, 447 (2007).

    Google Scholar 

  10. 10.

    X.H. Liu, J.Q. Wang, J.Y. Zhang, and S.R. Yang: Sol-gel template synthesis of LiV3O8 nanowires. J. Mater. Sci. 42, 867 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    H.W. Liu, H.M. Yang, and T. Huang: Synthesis, structure and electrochemical properties of one-dimensional nanometer materials LiV3O8. Med. Mai Infect. 37, 60 (2007).

    Google Scholar 

  12. 12.

    T.J. Patey, S.H. Ng, R. Buchel, N. Tran, F. Krumeich, J. Wang, H. K. Liu, and P. Novak: Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis. Electrochem. Solid-State Lett. 11, A46 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    D.S. Wang, T. Xie, and Y.D. Li: Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2, 30 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    D.S. Wang, X. Wang, R. Xu, and Y.D. Li: Shape-dependent catalytic activity of CuO/MgO nanocatalysts. J. Nanosci. Nano-technol. 7, 3602 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    D.S. Wang, R. Xu, X. Wang, and Y.D. Li: NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 17, 979 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    H. Yang, J. Li, X.G. Zhang, and Y.L. Jin: Synthesis of LiV3Og nanocrystallites as cathode materials for lithium ion batteries. J. Mater. Process. Technol. 207, 265 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    K.P. Lee, K.M. Manesh, K.S. Kim, and A.Y. Gopalan: Synthesis and characterization of nanostructured wires (ID) to plates (3D) LiV3O8 combining sol-gel and electrospinning processes. J. Nanosci. Nanotechnol. 9, 417 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    H.M. Liu, Y.G. Wang, K.X. Wang, Y.R. Wang, and H.S. Zhou: Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 192, 668 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    J.F. Liu, X. Wang, Q. Peng, and Y.D. Li: Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater. 17, 764 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    D.S. Wang, C.H. Hao, W. Zheng, X.L. Ma, D.R. Chu, Q. Peng, and Y.D. Li: Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2, 130 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    C.H. Hao, D. Wang, W. Zheng, and Q. Peng: Growth and assembly of monodisperse Ag nanoparticles by exchanging the organic capping ligands. J. Mater. Res. 24, 352 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    X.W. Lou, D. Deng, J.Y. Lee, J. Feng, and L.A. Archer: Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Y.G. Li, B. Tan, and Y.Y. Wu: Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8, 265 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, and Y. Cui: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan, and M. Yoshimura: Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electro-chim. Acta 49, 349 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    K. West, B. Zachau-Christiansen, S. Skaarup, Y. Saidi, J. Barker II, R. Olsen, R. Pynenburg, and R. Koksbang: Comparison of LiV3O8 cathode materials prepared by different methods. J. Electrochem. Soc. 143, 820 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    X.L. Xiao, L. Wang, D.S. Wang, X.M. He, Q. Peng, and Y.D. Li: Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2, 923 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    D.S. Wang, X.L. Ma, Y.G. Wang, L. Wang, Z.Y. Wang, W. Zheng, X.M. He, J. Li, Q. Peng, and Y.D. Li: Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 3, 1 (2010).

    Article  Google Scholar 

  29. 29.

    G. Pistoia, M. Pasquali, M. Tocci, R.V. Moshtev, and V. Maner: Li/ Li1+xV3O8 secondary batteries. 3. Further characterization of the mechanism of Li+ insertion and of the cycling behavior. J. Electrochem. Soc. 132, 281 (1985).

    CAS  Article  Google Scholar 

  30. 30.

    J. Kawakita, Y. Katayama, T. Miura, and T. Kishi: Lithium insertion behavior of Li1+xV3O8 prepared by precipitation technique in CH3OH. Solid State Ionics 110, 199 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    J. Kawakita, T. Miura, and T. Kishi: Lithium insertion and extraction kinetics of Li1+xV3O8. J. Power Sources 83, 79 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    S. Jouanneau, A. Verbaere, S. Lascaud, and D. Guyomard: Improvement of the lithium insertion properties of Lij !V3O8. Solid State Ionics 117, 311 (2006)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dingsheng Wang.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, P., Wang, D., Lu, J. et al. Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. Journal of Materials Research 26, 424–429 (2011).

Download citation