Coupling thermodynamics and digital image models to simulate hydration and microstructure development of portland cement pastes

Abstract

Equilibrium thermodynamic calculations, coupled to a kinetic model for the dissolution rates of clinker phases, have been used in recent years to predict time-dependent phase assemblages in hydrating cement pastes. We couple this approach to a 3D microstructure model to simulate microstructure development during the hydration of ordinary portland cement pastes. The combined simulation tool uses a collection of growth/dissolution rules to approximate a range of growth modes at material interfaces, including growth by weighted mean curvature and growth by random aggregation. The growth rules are formulated for each type of material interface to capture the kinds of cement paste microstructure changes that are typically observed. We make quantitative comparisons between simulated and observed microstructures for two ordinary portland cements, including bulk phase analyses and two-point correlation functions for various phases. The method is also shown to provide accurate predictions of the heats of hydration and 28 day mortar cube compressive strengths. The method is an attractive alternative to the cement hydration and microstructure model CEMHYD3D because it has a better thermodynamic and kinetic basis and because it is transferable to other cementitious material systems.

This is a preview of subscription content, access via your institution.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
Table III.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    D.P. Bentz: Three-dimensional computer simulation of cement hydration and microstructure development. J. Am. Ceram. Soc. 80, 3 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    D.P. Bentz: CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 3.0. NISTIR 7232, U.S. Department of Commerce. Available at http://concrete.nist.gov/monograph (2005).

    Google Scholar 

  3. 3.

    C-J. Haecker, E.J. Garboczi, J.W. Bullard, R.B. Bohn, Z. Sun, S.P. Shah, and T. Voigt: Modeling the linear elastic properties of portland cement paste. Cem. Concr. Res. 35, 1948 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    D.P. Bentz, O.M. Jensen, A.M. Coats, and F.P. Glasser: Influence of silica fume on diffusivity in cement-based materials. I. Experimental and computer modeling studies on cement pastes. Cem. Concr. Res. 30, 953 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Torrents, T.O. Mason, and E.J. Garboczi: Impedance spectra of fiber-reinforced cement-based composites: A modeling approach. Cem. Concr. Res. 30, 585 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    H.M. Jennings: Aqueous solubility relationships for two types of calcium silicate hydrate. J. Am. Ceram. Soc. 69, 618 (1986).

    Google Scholar 

  7. 7.

    P.W. Brown: Phase equilibria and cement hydration, in Materials Science of Concrete, Vol. I, edited by J. Skalny (American Ceramic Society, Westerville, OH, 1989), pp. 73–93.

    Google Scholar 

  8. 8.

    L.J. Parrot and D.C. Killoh: Prediction of cement hydration. Br. Ceram. Proc. 35, 41 (1984).

    CAS  Google Scholar 

  9. 9.

    D. Kulik: GEMS-PSI 2.03, PSI, Villigen, Switzerland. Available at http://gems.web.psi.ch/ (2009).

    Google Scholar 

  10. 10.

    B. Lothenbach and F. Winnefeld: Thermodynamic modelling of the hydration of portland cement. Cem. Concr. Res. 36, 209 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    B. Lothenbach and E. Wieland: A thermodynamic approach to the hydration of sulphate-resisting portland cement. Waste Manage. 26, 706 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    B. Lothenbach, T. Matschei, G. Möschner, and F.P. Glasser: Thermodynamic modelling of the effect of temperature on the hydration and porosity of portland cement. Cem. Concr. Res. 38, 1 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    B. Lothenbach, G. Le Saout, E. Gallucci, and K. Scrivener: Influence of limestone on the hydration of portland cements. Cem. Concr. Res. 38, 848 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    E. Guillon, J. Chen, and G. Chanvillard: Physical and chemical modelling of the hydration kinetics of OPC paste using a semi-analytical approach, in Proceedings of the CONMOD’08 International RILEM Symposium on Concrete Modelling, edited by E. Schlangen and G. De Schutter, RILEM Publication SARL, Bagneux, France, (2008), pp. 165–172.

    Google Scholar 

  15. 15.

    E. Guillon: Modeling the Influence of Physico-Chemical Equilibria on the Microstructure and Some Residual Mechanical Properties. Ph.D. Thesis, Ecole Normale Supérieure de Cachan, Cachan, France (2004).

    Google Scholar 

  16. 16.

    D.L. Parkhurst and C.A.J. Appelo: User’s guide to PHREEQC (version 2), A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Water Resources Investigation Report 99–4259, U.S. Geological Survey (1999).

    Google Scholar 

  17. 17.

    F. Tomosawa: Development of a kinetic model for hydration of cement, in Proceedings of the 10th International Congress on the Chemistry of Cement, Vol. 2, edited by H. Justnes, (1997) p. 2ii051.

    CAS  Google Scholar 

  18. 18.

    A.W. Adamson and A.P. Gast: Physical Chemistry of Surfaces, 6th ed. (Wiley-Interscience, New York, 1997).

    Google Scholar 

  19. 19.

    M.A.B. Promentilla, T. Sugiyama, T. Hitomi, and N. Takeda: Quantification of tortuosity in hardened cement pastes using synchrotron-based x-ray computed microtomography. Cem. Concr. Res. 39, 548 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    L.M. Schwartz, F. Auzerais, J. Dunsmuir, N. Martys, D.P. Bentz, and S. Torquato: Transport and diffusion in 3-dimensional composite media. Physica A 207, 28 (1994).

    Article  Google Scholar 

  21. 21.

    Annual Book of ASTM Standards, Vol. 04.01 (American Society for Testing and Materials, West Conshohocken, PA, 2000).

  22. 22.

    Final report: Portland Cement Proficiency Samples Number 151 and Number 152, Cement and Concrete Reference Laboratory, available at http://www.ccrl.us/ (2004).

    Google Scholar 

  23. 23.

    Final report: Portland Cement Proficiency Samples Number 167 and Number 168, Cement and Concrete Reference Laboratory, available at http://www.ccrl.us/ (2004).

    Google Scholar 

  24. 24.

    P.E. Stutzman and J.R. Clifton: Sample preparation for scanning electron microscopy, in Proceedings of the Twenty-First Annual International Conference on Cement Microscopy, edited by L. Jany and A. Nisperos (ICMA, Metropolis, IL, USA, 1999), pp. 10–22.

    Google Scholar 

  25. 25.

    P. Stutzman: Multi-spectral SEM imaging of cementitious materials, in Proceedings of the Twenty-Ninth Annual Conference on Cement Microscopy, edited by L. Sutter (ICMA, Metropolis, IL, USA, 2007).

    Google Scholar 

  26. 26.

    D. Landgrebe and L. Biehl: An introduction to Multispec. Available at http://dynamo.ecn.purdue.edu/~biehl/MultiSpec.

  27. 27.

    D. Landgrebe: Signal Theory Methods in Multispectral Remote Sensing (John Wiley and Sons, Inc, New York, 2003).

    Google Scholar 

  28. 28.

    D.P. Bentz, P.E. Stutzman, C.J. Haecker, and S. Remond: SEM/x-ray imaging of cement-based materials, in Proceedings of the 7th Euroseminar on Microscopy Applied to Building Materials, edited by H.S. Pietersen, J.A. Larbia, and H.H. A. Janssen (Delft University of Technology, Delft, The Netherlands, 1999), pp. 457–466.

    Google Scholar 

  29. 29.

    P. Stutzman and S. Leigh: Phase analysis of hydraulic cements by x-ray powder diffraction: Precision, bias, and qualification. J. ASTM Int. 4, 5 (2007).

    Article  Google Scholar 

  30. 30.

    L.E. Copeland and R.H. Bragg: Quantitative x-ray diffraction analysis. Anal. Chem. 30, 196 (1958).

    CAS  Article  Google Scholar 

  31. 31.

    P. Seligmann and N.R. Greening: Studies of early hydration reactions of portland cement by x-ray diffraction. Highway Research Record No. 62, 80–105 (1964).

    Google Scholar 

  32. 32.

    K.L. Scrivener, T. Füllman, E. Gallucci, G. Walenta, and E. Bermejo: Quantitative study of portland cement hydration by x-ray diffration/Rietveld analysis and independent methods. Cem. Concr. Res. 34, 1541 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    A.E. Moore and H.F.W. Taylor: The crystal structure of ettringite. Acta Crystallogr., Sect B 26, 386 (1970).

    CAS  Article  Google Scholar 

  34. 34.

    R. Allmann: Refinement of the hybrid layer structure of Ca2[Al(OH)6]+[1/2SO4 3H2O]. Neues Jahrb. Mineral. Monatsh. 3, 136 (1977).

    Google Scholar 

  35. 35.

    D.M. Henderson and H.S. Gutowsky: A nuclear magnetic resonance determination of the hydrogen positions in Ca(OH)2. Am. Mineral. 47, 1231 (1962).

    CAS  Google Scholar 

  36. 36.

    H.F.W. Taylor: Cement Chemistry, 2nd ed. (Thomas Telford, London, 1997).

    Google Scholar 

  37. 37.

    X. Cong and R.J. Kirkpatrick: 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 3, 144 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    I.G. Richardson: Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, portland cement, and blends of portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 34, 1733 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    E. Bonaccorsi, S. Merlino, and A.R. Kampf: The crystal structure of tobermorite 14 Å (plombierite), a C–S–H phase. J. Am. Ceram. Soc. 88, 505 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    W. Hummel, U. Berner, E. Curti, F.J. Pearson, and T. Thoenen: Nagra/PSI Chemical Thermodynamic Data Base 01/01 (Universal Publishers, Wettingen, Switzerland, 2002).

    Google Scholar 

  41. 41.

    T. Matschei, B. Lothenbach, and F.P. Glasser: Thermodynamic properties of portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    D.A. Kulik and M. Kersten: Aqueous solubility diagrams for cementitious waste stabilization systems: II. End-member stoichiometries of ideal calcium silicate hydrate solid solutions. J. Am. Ceram. Soc. 84, 3017 (2001).

    CAS  Article  Google Scholar 

  43. 43.

    J.W. Bullard and P.E. Stutzman: Analysis of CCRL proficiency cements 151 and 152 using the virtual cement and concrete testing laboratory. Cem. Concr. Res. 36, 1548 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    E.J. Garboczi and J.W. Bullard: Shape analysis of a reference cement. Cem. Concr. Res. 34, 1933 (2004).

    CAS  Article  Google Scholar 

  45. 45.

    J.W. Bullard and E.J. Garboczi: A model investigation of the influence of particle shape on portland cement hydration. Cem. Concr. Res. 36, 1007 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    D. Kaschiev and G.M. van Rosmalen: Review: Nucleation in solutions revisited. Cryst. Res. Technol. 38, 555 (2003).

    Article  CAS  Google Scholar 

  47. 47.

    J.G. Berryman and S.C. Blair: Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions. J. Appl. Phys. 60, 1930 (1986).

    CAS  Article  Google Scholar 

  48. 48.

    E.J. Garboczi, D.P. Bentz, and N.S. Martys: Digital images and computer modeling, in Experimental Methods for Porous Media, edited by P. Wong (Academic Press, New York, 1999).

    Google Scholar 

  49. 49.

    A.J. Allen, J.J. Thomas, and H.M. Jennings: Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat. Mater. 6, 311 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    H.M. Jennings: A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res. 30, 101 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Department of Energy Cementitious Barriers Partnership program and by the Sustainable Concrete Materials program at NIST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Bullard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bullard, J.W., Lothenbach, B., Stutzman, P.E. et al. Coupling thermodynamics and digital image models to simulate hydration and microstructure development of portland cement pastes. Journal of Materials Research 26, 609–622 (2011). https://doi.org/10.1557/jmr.2010.41

Download citation