Skip to main content
Log in

Improved electrical and dielectric properties of La-doped Co ferrite

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the enhanced dielectric constant and electrical resistivity of the Co-ferrite (CoO.Fe2O3) by partially substituting Fe with La. Structural characteristics of La-doped Co ferrite namely CoO.Fe1.925La0.075O3 indicate the cubic inverse spinel phase with a small amount of LaFeO3 additional phase. The lattice parameter obtained is 8.401 Å (±0.001 Å), which is higher than that reported for Co ferrite (8.387 Å, ±0.001 Å). The dielectric constant and electrical resistivity of CoO.Fe1.925La0.075O3 are higher compared with pure Co ferrite. The dielectric constant dispersion of CoO.Fe1.925La0.075O3 in the frequency range of 100 Hz to 1 MHz fits to the modified Debye’s function with more than one ion contributing to the relaxation. Temperature-dependent electrical resistivity curves exhibit two distinct regions indicative of two different types of conduction mechanisms. Analysis of the data indicates that the small polaron and variable-range hopping mechanisms are operative in the 220 to 300 K and 160 to 220 K temperature regions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE III.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. S. Chikazumi: Physics of Ferromagnetism (Oxford University Press, New York, 1997).

    Google Scholar 

  2. J. Smith and H.P.J. Wijn: Ferrites (Philips Technical Library, Eindhoven, The Netherlands, 1965).

    Google Scholar 

  3. F. Vereda, J. de Vicente, and R. Hidalgo-Álvarez: Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field. J. Mater. Res. 23, 1764 (2008).

    Article  CAS  Google Scholar 

  4. R. Peelamedu, C. Grimes, D. Agrawal, R. Roy, and P. Yadoji: Ultralow-dielectric constant nickel-zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292 (2003).

    Article  CAS  Google Scholar 

  5. D. Arcos, M. Vázquez, R. Valenzuela, and M. Vallet-Regi: Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14, 861 (1999).

    Article  CAS  Google Scholar 

  6. Z. Gu, X. Xiang, G. Fan, and F. Li: Facile synthesis and characterization of cobalt ferrite nanocrystal via a simple reduction-oxidation route. J. Phys. Chem. C 112, 18459 (2008).

    Article  CAS  Google Scholar 

  7. J. Kulikowski and A. Bienkowski: Magnetostriction of Ni–Zn ferrites containing cobalt. J. Magn. Magn. Mater. 26, 297 (1982).

    Article  CAS  Google Scholar 

  8. F. Cheng, C. Liao, J. Kuang, Z. Xu, C. Yan, L. Chen, H. Zhao, and Z. Liu: Nanostructure magneto-optical thin films of rare earth (RE = Gd, Tb, Dy) doped cobalt spinel by sol–gel synthesis. J. Appl. Phys. 85, 2782 (1999).

    Article  CAS  Google Scholar 

  9. W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  10. D.I. Khomskii: Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).

    Article  CAS  Google Scholar 

  11. N.A. Hill: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).

    Article  CAS  Google Scholar 

  12. X.L. Zhong, M. Liao, J.B. Wang, S.H. Xie, and Y.C. Zhou: Structural, ferroelectric, ferromagnetic, and magnetoelectric properties of the lead-free Bi3.15Nd0.85Ti3O12/CoFe2O4 double-layered thin film. J. Cryst. Growth 310, 2995 (2008).

    Article  CAS  Google Scholar 

  13. M. Fiebig: Revival of magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  CAS  Google Scholar 

  14. S.L. Kadam, C.M. Kanamadi, K.K. Patankar, and B.K. Chougule: Dielectric behaviour and magnetoelectric effect in Ni0.5Co0.5Fe2O4 + Ba0.8Pb0.2TiO3 ME composites. Mater. Lett. 59, 215 (2005).

    Article  CAS  Google Scholar 

  15. E. Manova, B. Kunev, D. Paneva, I. Mitov, and L. Petrov: Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689 (2005).

    Article  Google Scholar 

  16. Q. Song and Z.J. Zhang: Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals. J. Phys. Chem. B 110, 11205 (2006).

    Article  CAS  Google Scholar 

  17. I.H. Gul and A. Maqsood: Structural, magnetic and electrical properties of cobalt ferrites prepared by the solgel route. J. Alloys Compd. 465, 227 (2008).

    Article  CAS  Google Scholar 

  18. C.V. Gopal Reddy, S.V. Manorama, and V.J. Rao: Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators, B 55, 90 (1990).

    Article  Google Scholar 

  19. J.L. Gunjakar, A.M. More, V.R. Shinde, and C.D. Lokhande: Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J. Alloys Compd. 465, 468 (2008).

    Article  CAS  Google Scholar 

  20. Y.N. Nuli and Q.Z. Qin: Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. J. Power Sources 142, 292 (2005).

    Article  CAS  Google Scholar 

  21. G.L. Sun, J.B. Li, J.J. Sun, and X.Z. Yang: The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel–zinc ferrites. J. Magn. Magn. Mater. 281, 173 (2004).

    Article  CAS  Google Scholar 

  22. N. Rezlescu, E. Rezlescu, C. Pasnicu, and M.L. Craus: Effects of the rare-earth ions on some properties of nickel–zinc ferrite. J. Phys. Condens. Matter 6, 5707 (1994).

    Article  CAS  Google Scholar 

  23. R. Hochschild and H. Fuess: Rare-earth doping of nickel zinc ferrites. J. Mater. Chem. 10, 539 (2000).

    Article  CAS  Google Scholar 

  24. E.E. Sileo, E. Silvia, and E. Jacobo: Gadolinium–nickel ferrites prepared from metal citrates precursors. Physica B 354, 241 (2004).

    Article  CAS  Google Scholar 

  25. M. Ajmal and A. Maqsood: Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater. Sci. Eng., B 139, 164 (2007).

    Article  CAS  Google Scholar 

  26. R.S. Devan, Y.D. Kolekar, and B.K. Chougule: Effect of cobalt substitution on the properties of nickel copper ferrite. J. Phys. Condens. Matter 18, 9809 (2006).

    Article  CAS  Google Scholar 

  27. A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS), in Los Alamos National Laboratory Report LAUR The Regents of the University of California, Los Alamos, NM, 2004), p. 86.

    Google Scholar 

  28. J.D. Dunitz and L.E. Orgel: Electronic properties of transition-metal oxides. J. Phys. Chem. Solids 3, 20 (1957).

    Article  CAS  Google Scholar 

  29. C.V. Ramana, A. Ait-Salah, S. Utsunomiya, J.F. Morhange, A. Maugher, F. Gendron, and C.M. Julien: Spectroscopic and chemical imaging analysis of lithium iron triphosphate. J. Phys. Chem. C 111, 1049 (2007).

    Article  CAS  Google Scholar 

  30. C.V. Ramana, A. Ait-Salah, S. Utsunomiya, U. Becker, A. Mauger, F. Gendron, and C.M. Julien: Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy. Chem. Mater. 18, 3788 (2006).

    Article  CAS  Google Scholar 

  31. N.F. Mott and E.A. Davis: Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979).

    Google Scholar 

  32. M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass, and K. Abdel Hady: Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) thin films. J. Phys. Condens. Matter 18, 9987 (2006).

    Article  CAS  Google Scholar 

  33. A. Fujiwara, M. Tada, T. Nakagawa, and M. Abe: Permeability and electric resistivity of spin-sprayed Zn ferrite films for high-frequency device applications. J. Magn. Magn. Mater. 320, L67 (2008).

    Article  CAS  Google Scholar 

  34. R.A. Gangopadhyay, R.A. De, and S. Das: Transport properties of polypyrrole ferric oxide conducting nanocomposites. J. Appl. Phys. 87, 2363 (2000).

    Article  CAS  Google Scholar 

  35. S. Ambily and C.S. Menon: The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films. Thin Solid Films 347, 284 (1999).

    Article  CAS  Google Scholar 

  36. K.S. Cole and R.H. Cole: Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  37. J.C. Anderson: Dielectrics (Spottiswoode, Ballantyne & Co. Ltd., London, 1964).

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge with pleasure the support from Lockheed Martin Co. (LMC) to perform the work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.V. Ramana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, K.K., Ramana, C. Improved electrical and dielectric properties of La-doped Co ferrite. Journal of Materials Research 26, 584–591 (2011). https://doi.org/10.1557/jmr.2010.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.37

Navigation