Formation of amorphous xenon nanoclusters and microstructure evolution in pulsed laser deposited Ti62.5Si37.5 thin films during Xe ion irradiation


As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 10 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    V.S. Varichenko, A.M. Zaitsev, N.M. Kazutchits, A.R. ChelyadinsMi, N.M. Penina, V.A. Martinovich, Y.I. Latushko, and W.R. Fahrner: Defect production in silicon irradiated with 5.68 GeV Xe ions. Nucl. lustrum. Methods Phys. Res., Sect. B 107, 268 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    C. Jaouen, J.P. Riviere, and J. Delafond: Temperature dependence for ion-induced amorphization of NiAl. Nucl. Instrum. Methods Phys. Res., Sect. B 59-60, 406 (1991).

    Article  Google Scholar 

  3. 3.

    N. Yu, K. Yasuda, M. Nastasi, K.E. Sickafus, and J.R. Tesmer: In situ study of ion-beam induced lattice damage in calcium fluoride crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 127-128, 591 (1997).

    Article  Google Scholar 

  4. 4.

    M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda: Structure of a phase induced with Xe-ion irradiation-implantation in gamma-TiAl. Philos. Mag. Lett. 80, 661 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    J. Oliver and P. Veyssiere: Radiation-induced helical dislocations in Co3Ti. Philos. Mag. Lett. 63, 141 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    K.E. Sickafus, N. Yu, and M. Nastasi: Amorphization of MgAl2O4 spinel using 1.5 MeV Xe+ ions under cryogenic irradiation conditions. J. Nucl. Mater. 304, 237 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    S. Utsunomiya, L.M. Wang, S. Yudintsev, and R.C. Ewing: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    C. Templier, R.J. Gaboriaud, and H. Garem: Precipitation of implanted xenon in aluminium. Mater. Sci. Eng. 69, 63 (1985).

    Article  Google Scholar 

  9. 9.

    C.W. Allen, R.C. Birtcher, S.E. Donnelly, M. Song, K. Mitsuishi, K. Furuya, and U. Dahmen: Determination of interfacial tensions for Xe nanoprecipitates in Al at 300 K. Philos. Mag. Lett. 83, 57 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    C.W. Allen, R.C. Birtcher, S.E. Donnelly, K. Furuya, K. Mitsuishi, and M. Song: Melting and crystallization of Xe nanoprecipitates in Al under 1 MeV electron irradiation. J. Electron Microsc. (Tokyo) 51, SI75 (2002).

    Article  Google Scholar 

  11. 11.

    R.C. Bircher, S.E. Donnelly, M. Song, K. Furuya, K. Mitsuishi, and C.W. Allen: Behavior of crystalline Xe nanoprecipitates during coalescence. Phys. Rev. Lett. 83, 1617 (1999).

    Article  Google Scholar 

  12. 12.

    K. Mitsuishi, M. Song, K. Furuya, R.C. Birtcher, C.W. Allen, and S.E. Donnelly: Observation of atomic processes in Xe nanocrystals embedded in Al under 1 MeV electron irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 184 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    H. Wang, R. Araoujo, J.G. Swadener, Y.Q. Wang, X. Zhang, E.G. Fu, and T. Cagin: Ion irradiation effects in nanocrystalline TiN coatings. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 1162(2007).

    CAS  Article  Google Scholar 

  14. 14.

    S. Yamanaka, H. Ohara, P. Son, and M. Miyake: Ion irradiation and thermal cycling tests of TiC coatings. J. Nucl. Mater. 128–129, 937 (1984).

    Article  Google Scholar 

  15. 15.

    V.V. Uglov, D.P. Rusalski, S.V. Zlotski, A.V. Sevriuk, G. Abadias, S.B. Kislitsin, K.K. Kadyrzhanov, I.D. Gorlachev, and S.N. Dub: Stability of Ti-Zr-N coatings under Xe-ion irradiation. Surf. Coat. Technol. 204, 2095 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    S. Bysakh, P.K. Das, and K. Chattopadhyay: Microstructure evolution and metastable phase formation in laser-ablation-deposited films of Ti5Si3 intermetallic compound. Philos. Mag. A 82, 1235 (2002).

    CAS  Google Scholar 

  17. 17.

    D.R.G. Michell, S.E. Donnelly, S.R. Glanvill, P.R. Miller, and C.J. Rossouw: A TEM and EDX study of cavities formed in tin by xenon ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 52, 160 (1992).

    Article  Google Scholar 

  18. 18.

    F. Zontone, F. D’Acapito, G. Faraci, and A.R. Pennisi: Evidence of a compressed fluid phase in Xe clusters. Eur. Phys. J. B 19, 501 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    G. Faraci, A.R. Pennisi, and F. Zontone: Fine structure effects and phase transition of Xe nanocrystals in Si. Eur. Phys. J. B 51, 209 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    S.E. Donnelly, R.C. Birtcher, C.W. Allen, I. Morrison, K. Furuya, M. Song, K. Mitsuishi, and U. Dahmen: Ordering in a fluid inert gas confined by flat surfaces. Science 296, 507 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    C. Desgranges and J. Delhommelle: Crystallization mechanisms for supercooled liquid Xe at high pressure and temperature: Hybrid Monte-Carlo molecular simulations. Phys. Rev. B77, 054201 (2008).

    Article  Google Scholar 

  22. 22.

    A.B. Belonoshko, O. Lebacq, R. Ahuja, and B. Johansson: Molecular dynamics study of phase transitions in Xe. J. Chem. Phys. 117, 7233 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    P.F. Barberi, R. Landers, M.H. de Oliviera Jr., F. Alvarez, and F.C. Marques: Electronic structure of xenon implanted with low energy in amorphous silicon. J. Electron. Spectrosc. Relat. Phenom. 156-158, 409 (2007).

    Article  Google Scholar 

  24. 24.

    J. Quakernaat and J.W. Visser: Lattice dimensions of low-rate metalloid-stabilized Ti5Si3. High Temp. High Press. 6, 515 (1974).

    CAS  Google Scholar 

  25. 25.

    J.F. Dinhut and M.F. Denanot: Solid xenon bubbles in Fe and Mo thin films. Mater. Lett. 17, 37 (1993).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support of the Aeronautical Research and Development Board, India, and Japan Science and Technology to carry out this work. The authors also acknowledge Professor P.K. Das of the Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India, for extending the use of the Q-switched nanosecond pulsed laser facility for carrying out thin film deposition experiments. One of the authors (S.B.) gratefully acknowledges Japan Science and Technology for awarding the COE research fellowship. The first author (S.B.) would like to thank the Director of the Central Glass and Ceramic Research Institute, Calcutta, India, for permission to publish this work.

Author information



Corresponding author

Correspondence to Sandip Bysakh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bysakh, S., Mitsuishi, K., Song, M. et al. Formation of amorphous xenon nanoclusters and microstructure evolution in pulsed laser deposited Ti62.5Si37.5 thin films during Xe ion irradiation. Journal of Materials Research 26, 62–69 (2011).

Download citation