Abstract
The objective of this study was to identify the microstructural mechanisms controlling Ω precipitates’ contribution to the high strength and ductility of Al–Cu–Mg–Ag alloys subjected to high impact loading conditions. Three interrelated approaches were used: (i) HRTEM imaging of deformed Ω precipitates in ballistically impacted Al–Cu–Mg–Ag plates, (ii) microstructurally based finite element (FE) analysis based on specialized crystalline plasticity formulations, and (iii) molecular dynamics (MD) simulations of dislocation nucleation and emission. The FE and MD simulations detail the evolution of dislocation densities and dislocations at the Al/Ω interface, which are consistent with the experimentally observed multiplicity of shear cutting of thin Ω precipitates. Furthermore, the FE results indicate that unrelaxed tensile strains at the Al/Ω interface can inhibit localized deformation in the alloy.
This is a preview of subscription content, access via your institution.














References
- 1.
L. Eschbach, C. Solenthaler, P.J. Uggowitzer, and M.O. Speidel: Strength and fracture toughness of spray formed Al–Cu–Mg–Ag Alloys. Mater. Sci. Technol. 15, 926 (1999).
- 2.
I.J. Polmear and M.J. Couper: Design and development of an experimental wrought aluminium-alloy for use at elevated-temperatures. Metall. Trans. A 19, 1027 (1988).
- 3.
K. Hono, N. Sano, S.S. Babu, R. Okano, and T. Sakurai: Atom probe study of the precipitation process in Al–Cu–Mg–Ag alloys. Acta Metall. Mater. 41, 829 (1993).
- 4.
J.M. Howe and D.P. Basile: Minimum detectable solute concentration in atomic-resolution transmission electron-microscopy. Acta Crystallogr., Sect. A 44, 449 (1988).
- 5.
A. Cho and B. Bes: Damage tolerance capability of an Al–Cu–Mg–Ag alloy (2139). Mater. Sci. Forum 519–521, 603(2006).
- 6.
B. Cheeseman, W. Gooch, and M. Burkins: Ballistic evaluation of aluminum 2139-T8, in 24th International Ballistics Symposium (New Orleans, LA, 2008).
- 7.
W. Lee and M. Zikry: Microstructural characterization of a high strength aluminum alloy subjected to high strain-rate impact. Metall. Mater. Trans. A (2011, in press).
- 8.
B.Q. Li and F.E. Wawner: Dislocation interaction with semicoherent precipitates (omega phase) in deformed Al–Cu–Mg–Ag alloy. Acta Mater. 46, 5483 (1998).
- 9.
V. Orsini and M. Zikry: Void growth and interaction in crystalline materials. Int. J. Plast. 17, 1393 (2001).
- 10.
M.A. Zikry and M. Kao: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765 (1996).
- 11.
W. Ashmawi and M. Zikry: Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J. Eng. Mater. Technol. 124, 88 (2002).
- 12.
H. Mughrabi: A two parameter description of heterogeneous dislocation distributions in deformed metal crystals. Mater. Sci. Eng. 85, 15 (1987).
- 13.
T. Kameda and M.A. Zikry: Three dimensional dislocation-based crystalline constitutive formulation for ordered intermetallics. Scr. Mater. 38, 631 (1996).
- 14.
K.M. Knowles and W.M. Stobbs: The structure of (111) age-hardening precipitates in Al–Cu–Mg–Ag alloys. Acta Crystallogr., Sect. B 44, 207 (1988).
- 15.
A. Garg and J.M. Howe: Convergent-beam electron-diffraction analysis of the omega phase in an Al–4.0 Cu–0.5 Mg–0.5 Ag alloy. Acta Metall. Mater. 39, 1939 (1991).
- 16.
S. Ringer and K. Hono: Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101 (2000).
- 17.
S.C. Wang and M.J. Starink: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193 (2005).
- 18.
R. Bonnet and M. Loubradou: Crystalline defects in a BCT Al2Cu(Theta) single crystal obtained by unidirectional solidification along. Phys. Status Solidi A 194, 173 (2002).
- 19.
M. Ignat and F. Durand: Deformation lines on Al2Cu single crystals after creep in compression. Scr. Metall. 10, 623 (1976).
- 20.
K. Elkhodary, L. Sun, D.L. Irving, D.W. Brenner, G. Ravichandran, and M.A. Zikry: Integrated experimental, atomistic, and microstructurally based finite element investigation of the dynamic compressive behavior of 2139 aluminum. J. Appl. Mech. 76, 051306 (2009).
- 21.
K. Elkhodary, W. Lee, B. Cheeseman, D.W. Brenner, and M.A. Zikry: High strain-rate behavior of high strength aluminum alloys, in Nano- and Microscale Materials—Mechanical Properties and Behavior under Extreme Environments, edited by A. Misra, T.J. Balk, H. Huang, M.J. Caturla, and C. Eberl (Mater. Res. Soc. Symp. Proc. 1137E, Warrendale, PA, 2009), 1137-EE05-31.
- 22.
I.J. Polmear: Light Alloys: Metallurgy of the Light Metals, 4th ed. (Elsevier/Butterworth-Heinemann, Burlington, MA}, 2006), p. 38.
- 23.
J. Embury: Plastic-flow in dispersion hardened materials. Metall. Trans. A 16, 2191 (1985).
- 24.
K. El-Khodary, W. Lee, L. Sun, B. Cheeseman, D. Brenner, and M. Zikry: Integrated experimental and computational modeling of the high strain-rate behavior of aluminum alloys, in Multiscale Polycrystal Mechanics of Complex Microstructures, edited by D. Raabe, S. Kalidindi, R. Radovitzky, and M. Geers (Mater. Res. Soc. Symp. Proc. 1225E, Boston, MA, 2010).
- 25.
R. Fonda, W.A. Cassada, and G.J. Shiflet: Accommodation of the misfit strain surrounding (III) precipitates (Omega) in Al–Cu–Mg–(Ag). Acta Metall. Mater. 40, 2539 (1992).
- 26.
C.R. Hutchinson, X. Fan, S.J. Pennycook, and G.J. Shiflet: On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys. Acta Mater. 49, 2827 (2001).
- 27.
Hibbitt, Karlson, and Sorensen: Abaqus Analysis User’s Manual, v6.8 (Dassault Systémes, 2008).
- 28.
X. Liu, W. Xu, S. Foiles, and J. Adams: Atomistic studies of segregation and diffusion in Al–Cu grain boundaries. Appl. Phys. Lett. 72, 1578 (1998).
- 29.
L. Sun, D.L. Irving, M.A. Zikry, and D.W. Brenner: First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al/Ω interface in a Al–Cu–Mg–Ag Alloy. Acta Mater. 57, 3522 (2009).
- 30.
C.L. Kelchner, S. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B: Condens. Matter 58, 11085 (1998).
- 31.
A.W. Zhu, G.J. Shiflet, and E.A. Starke: First-principles calculations for alloy design of moderate temperature age-hardenable Al alloys. Mater. Sci. Forum 519, 35 (2006).
- 32.
C.J. Smithells: Smithells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann, Burlington, MA, 2004).
- 33.
A.A. Ali, G.N. Podus, and A.F. Sirenko: Determining the thermal activation parameters of plastic deformation of metals from data on the kinetics of creep and relaxation of mechanical stresses. Strength Mater. 11, 496 (1979).
- 34.
M. Zikry and M. Kao: Inelastic microstructural failure modes in crystalline materials: The S33A ANS S11 high angle grain boundaries. Int. J. Plast. 13, 31 (1997).
- 35.
M. Zikry: An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50, 14 (1994).
Acknowledgment
Support from the Army Research Office and JIEDDO is gratefully acknowledged.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elkhodary, K., Lee, W., Sun, L. et al. Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates. Journal of Materials Research 26, 487–497 (2011). https://doi.org/10.1557/jmr.2010.29
Received:
Accepted:
Published:
Issue Date: