Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates

Abstract

The objective of this study was to identify the microstructural mechanisms controlling Ω precipitates’ contribution to the high strength and ductility of Al–Cu–Mg–Ag alloys subjected to high impact loading conditions. Three interrelated approaches were used: (i) HRTEM imaging of deformed Ω precipitates in ballistically impacted Al–Cu–Mg–Ag plates, (ii) microstructurally based finite element (FE) analysis based on specialized crystalline plasticity formulations, and (iii) molecular dynamics (MD) simulations of dislocation nucleation and emission. The FE and MD simulations detail the evolution of dislocation densities and dislocations at the Al/Ω interface, which are consistent with the experimentally observed multiplicity of shear cutting of thin Ω precipitates. Furthermore, the FE results indicate that unrelaxed tensile strains at the Al/Ω interface can inhibit localized deformation in the alloy.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

References

  1. 1.

    L. Eschbach, C. Solenthaler, P.J. Uggowitzer, and M.O. Speidel: Strength and fracture toughness of spray formed Al–Cu–Mg–Ag Alloys. Mater. Sci. Technol. 15, 926 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    I.J. Polmear and M.J. Couper: Design and development of an experimental wrought aluminium-alloy for use at elevated-temperatures. Metall. Trans. A 19, 1027 (1988).

    Article  Google Scholar 

  3. 3.

    K. Hono, N. Sano, S.S. Babu, R. Okano, and T. Sakurai: Atom probe study of the precipitation process in Al–Cu–Mg–Ag alloys. Acta Metall. Mater. 41, 829 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    J.M. Howe and D.P. Basile: Minimum detectable solute concentration in atomic-resolution transmission electron-microscopy. Acta Crystallogr., Sect. A 44, 449 (1988).

    Article  Google Scholar 

  5. 5.

    A. Cho and B. Bes: Damage tolerance capability of an Al–Cu–Mg–Ag alloy (2139). Mater. Sci. Forum 519–521, 603(2006).

    Article  Google Scholar 

  6. 6.

    B. Cheeseman, W. Gooch, and M. Burkins: Ballistic evaluation of aluminum 2139-T8, in 24th International Ballistics Symposium (New Orleans, LA, 2008).

    Google Scholar 

  7. 7.

    W. Lee and M. Zikry: Microstructural characterization of a high strength aluminum alloy subjected to high strain-rate impact. Metall. Mater. Trans. A (2011, in press).

    Google Scholar 

  8. 8.

    B.Q. Li and F.E. Wawner: Dislocation interaction with semicoherent precipitates (omega phase) in deformed Al–Cu–Mg–Ag alloy. Acta Mater. 46, 5483 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    V. Orsini and M. Zikry: Void growth and interaction in crystalline materials. Int. J. Plast. 17, 1393 (2001).

    Article  Google Scholar 

  10. 10.

    M.A. Zikry and M. Kao: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    W. Ashmawi and M. Zikry: Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J. Eng. Mater. Technol. 124, 88 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    H. Mughrabi: A two parameter description of heterogeneous dislocation distributions in deformed metal crystals. Mater. Sci. Eng. 85, 15 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    T. Kameda and M.A. Zikry: Three dimensional dislocation-based crystalline constitutive formulation for ordered intermetallics. Scr. Mater. 38, 631 (1996).

    Article  Google Scholar 

  14. 14.

    K.M. Knowles and W.M. Stobbs: The structure of (111) age-hardening precipitates in Al–Cu–Mg–Ag alloys. Acta Crystallogr., Sect. B 44, 207 (1988).

    Article  Google Scholar 

  15. 15.

    A. Garg and J.M. Howe: Convergent-beam electron-diffraction analysis of the omega phase in an Al–4.0 Cu–0.5 Mg–0.5 Ag alloy. Acta Metall. Mater. 39, 1939 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    S. Ringer and K. Hono: Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    S.C. Wang and M.J. Starink: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193 (2005).

    Article  Google Scholar 

  18. 18.

    R. Bonnet and M. Loubradou: Crystalline defects in a BCT Al2Cu(Theta) single crystal obtained by unidirectional solidification along. Phys. Status Solidi A 194, 173 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    M. Ignat and F. Durand: Deformation lines on Al2Cu single crystals after creep in compression. Scr. Metall. 10, 623 (1976).

    CAS  Article  Google Scholar 

  20. 20.

    K. Elkhodary, L. Sun, D.L. Irving, D.W. Brenner, G. Ravichandran, and M.A. Zikry: Integrated experimental, atomistic, and microstructurally based finite element investigation of the dynamic compressive behavior of 2139 aluminum. J. Appl. Mech. 76, 051306 (2009).

    Article  Google Scholar 

  21. 21.

    K. Elkhodary, W. Lee, B. Cheeseman, D.W. Brenner, and M.A. Zikry: High strain-rate behavior of high strength aluminum alloys, in Nano- and Microscale Materials—Mechanical Properties and Behavior under Extreme Environments, edited by A. Misra, T.J. Balk, H. Huang, M.J. Caturla, and C. Eberl (Mater. Res. Soc. Symp. Proc. 1137E, Warrendale, PA, 2009), 1137-EE05-31.

    Google Scholar 

  22. 22.

    I.J. Polmear: Light Alloys: Metallurgy of the Light Metals, 4th ed. (Elsevier/Butterworth-Heinemann, Burlington, MA}, 2006), p. 38.

    Google Scholar 

  23. 23.

    J. Embury: Plastic-flow in dispersion hardened materials. Metall. Trans. A 16, 2191 (1985).

    Article  Google Scholar 

  24. 24.

    K. El-Khodary, W. Lee, L. Sun, B. Cheeseman, D. Brenner, and M. Zikry: Integrated experimental and computational modeling of the high strain-rate behavior of aluminum alloys, in Multiscale Polycrystal Mechanics of Complex Microstructures, edited by D. Raabe, S. Kalidindi, R. Radovitzky, and M. Geers (Mater. Res. Soc. Symp. Proc. 1225E, Boston, MA, 2010).

    Google Scholar 

  25. 25.

    R. Fonda, W.A. Cassada, and G.J. Shiflet: Accommodation of the misfit strain surrounding (III) precipitates (Omega) in Al–Cu–Mg–(Ag). Acta Metall. Mater. 40, 2539 (1992).

    CAS  Article  Google Scholar 

  26. 26.

    C.R. Hutchinson, X. Fan, S.J. Pennycook, and G.J. Shiflet: On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys. Acta Mater. 49, 2827 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    Hibbitt, Karlson, and Sorensen: Abaqus Analysis User’s Manual, v6.8 (Dassault Systémes, 2008).

    Google Scholar 

  28. 28.

    X. Liu, W. Xu, S. Foiles, and J. Adams: Atomistic studies of segregation and diffusion in Al–Cu grain boundaries. Appl. Phys. Lett. 72, 1578 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    L. Sun, D.L. Irving, M.A. Zikry, and D.W. Brenner: First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al/Ω interface in a Al–Cu–Mg–Ag Alloy. Acta Mater. 57, 3522 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    C.L. Kelchner, S. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B: Condens. Matter 58, 11085 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    A.W. Zhu, G.J. Shiflet, and E.A. Starke: First-principles calculations for alloy design of moderate temperature age-hardenable Al alloys. Mater. Sci. Forum 519, 35 (2006).

    Article  Google Scholar 

  32. 32.

    C.J. Smithells: Smithells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann, Burlington, MA, 2004).

    Google Scholar 

  33. 33.

    A.A. Ali, G.N. Podus, and A.F. Sirenko: Determining the thermal activation parameters of plastic deformation of metals from data on the kinetics of creep and relaxation of mechanical stresses. Strength Mater. 11, 496 (1979).

    Article  Google Scholar 

  34. 34.

    M. Zikry and M. Kao: Inelastic microstructural failure modes in crystalline materials: The S33A ANS S11 high angle grain boundaries. Int. J. Plast. 13, 31 (1997).

    Article  Google Scholar 

  35. 35.

    M. Zikry: An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50, 14 (1994).

    Article  Google Scholar 

Download references

Acknowledgment

Support from the Army Research Office and JIEDDO is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M.A. Zikry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elkhodary, K., Lee, W., Sun, L. et al. Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates. Journal of Materials Research 26, 487–497 (2011). https://doi.org/10.1557/jmr.2010.29

Download citation