Correlation between the trap state spectra and dielectric behavior of CaCu3Ti4O12


The temperature dependence of the various electric relaxation times in the perovskite oxide CaCu3Ti4O12 (CCTO) is determined (i) by trap state spectroscopy and (ii) by the dielectric loss function. A similarity in both number and properties of the (i) and (ii) relaxation times was found, suggesting that the dielectric response is strongly correlated with the trap state relaxation, although some differences remain. One or more dipoles developing charged trap states are considered responsible, and the experimental dielectric response of CCTO and Mn substituted CCTO are explored.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.


  1. 1.

    M.A. Subramanian, L. Dong, N. Duan, B.A. Reisner, and A.W. Sleight: High-dielectric constant in ACu3Ti4O12 and ACu3Ti3_ FeO12 phases. J. Solid State Chem. 151, 323 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    L. Chen and C.L. Wang: First principles study of the electron structures of CaCu3Mn4O12 and CaCu3Ti4O12. J. Magn. Magn. Mater. 312, 266 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez: Optical response of high-dielectric constant perovskite-relative oxide. Science 293, 673 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    L. Ni and X.M. Chen: Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 91, 122905 (2007).

    Article  Google Scholar 

  6. 6.

    B. Shriprakash and K.B.R. Varma: Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Z. Phys. B: Condens. Matter 382, 312 (2006).

    Article  Google Scholar 

  7. 7.

    T.B. Adams, D.C. Sinclair, and A.R. West: Giant barrier layer capacitance effects in CaC TLtO ceramics. Adv. Mater. 14, 1321 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl: Non-intrinsic origin of the colossal dielectric constants in CaC TLtO. Phys. Rev. B 70, 172102 (2004).

    Article  Google Scholar 

  9. 9.

    D.C. Sinclair, T.A. Adams, F.D. Morrison, and A.R. West: CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    T.B. Adams, D.C. Sinclair, and A.R. West: Characterization of grain boundary impedances in fine- and coarse-grained CaCu3TL,O12 ceramics. Phys. Rev. B 73, 094124 (2006).

    Article  Google Scholar 

  11. 11.

    G.H. Cao, L.X. Feng, and C. Wang: Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D: Appl. Phys. 40, 2899 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, and C.L. Wang: Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99, 084106 (2006).

    Article  Google Scholar 

  13. 13.

    S.V. Kalinin, J. Shin, G.M. Veith, A.P. Baddorf, M.V. Lobanov, H. Runge, and M. Greenblatt: Real space imaging of the microscopic origins of the ultrahigh-dielectric constant in polycrystalline CaCu3Ti4O12. Appl. Phys. Lett. 86, 102902 (2005).

    Article  Google Scholar 

  14. 14.

    J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, and J.R. Hardy: Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 093703 (2005).

    Article  Google Scholar 

  15. 15.

    C.C. Wang and L.W. Zhang: Surface-layer effect in CaCu3Ti4tO12. Appl. Phys. Lett. 88, 042906 (2006).

    Article  Google Scholar 

  16. 16.

    J. Li, A.W. Sleight, and M.A. Subramanian: Evidence for internal resistive barriers in a crystal of the giant dielectric-constant material: CaCu3Ti4O12. Solid State Commun. 135, 260 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    T.T. Fang, W.J. Lin, and C.Y. Lin: Evidence of the ultrahigh-dielectric constant of CaSiO3-doped CaCu3Ti4O12 from its dielectric response, impedance spectroscopy, and microstructure. Phys. Rev. B 76, 045115 (2007).

    Article  Google Scholar 

  18. 18.

    W. Li and R.W. Schwartz: Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007).

    Article  Google Scholar 

  19. 19.

    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidl: Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002).

    Article  Google Scholar 

  20. 20.

    G. Deng, T. Yamada, and P. Muralt: Evidence for the existence of a metal-insulator-semiconductor junction at the electrode interfaces of CaCu3Ti4O12 thin film capacitors. Appl. Phys. Lett. 91, 202903 (2007).

    Article  Google Scholar 

  21. 21.

    G. Deng, N. Xanthopoulos, and P. Muralt: Chemical nature of colossal dielectric constant of CaCu3Ti4tO12 thin film by pulsed laser deposition. Appl. Phys. Lett. 92, 172909 (2008).

    Article  Google Scholar 

  22. 22.

    S.Y. Chung, I.D. Kim, and S.J. Kang: Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    P.R. Bueno, R. Tararan, R. Parra, E. Ramirez, M.A. Ribeiro, E. Longo, and J.A. Varela: A polaronic stacking fault defect model for CaCu3Ti4O12 material: An approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D: Appl. Phys. 42, 055404 (2009).

    Article  Google Scholar 

  24. 24.

    C. Mu, H. Zhang, Y. He, J. Shen, and P. Liu: Influence of DC bias on the dielectric relaxation in Fe-substituted CaCu3Ti4O12 ceramics: Grain boundary and surface effects. J. Phys. D: Appl. Phys. 42, 175410 (2009).

    Article  Google Scholar 

  25. 25.

    M. Li, A. Feteira, D.C. Sinclair, and A.R. West: Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 232903 (2006).

    Article  Google Scholar 

  26. 26.

    R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, and G.A. Samara: Dielectric and magnetic properties of Fe-and Nb-doped CaCu3Ti4O12Phys. Rev. B 72, 104111 (2005).

    Article  Google Scholar 

  27. 27.

    G. Deng and P. Muralt: Annealing effects on electrical properties and defects of CaCu3Ti4O12 thin films deposited by pulsed laser deposition. Phys. Rev. B 81, 224111 (2010).

    Article  Google Scholar 

  28. 28.

    X.J. Luo, C.P. Yang, S.S. Chen, X.P. Song, H. Wang, and K. Baerner: The trap state relaxation related polarization in CaCu3Ti4O12. J. Appl. Phys. 108, 014107 (2010).

    Article  Google Scholar 

  29. 29.

    R. Horyn, E. Bukowskas, and A. Sikora: Nature of structure defects in rhombohedral series of La1_xAxMnO3+γ (A=Na, K). J. Alloys Compd. 346, 107 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Koyama, I. Tanaka, H. Adachi, Y. Uchimoto, and M. Wakihara: First-principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn2O4. J. Electrochem. Soc. 150(1), 63 (2003).

    Article  Google Scholar 

  31. 31.

    K. Barner, B. Raveau, and I.O. Troyanchuk: Some elements of oxygen non-stoichiometry in manganites, in Recent Research Developments in Materials Science and Engineering (Transworld Research Network, Trivandrum, Kerala, 2003), pp. 185–216.

    Google Scholar 

  32. 32.

    P. Delugas, P. Alippi, and V. Raineri: Native point defects in CaCu3Ti4O12. Mater. Sci. Eng. 8, 012015 (2010).

    Google Scholar 

  33. 33.

    K. Barner, W. Morsakov, I.V. Medvedeva, H. Deng, and C.P. Yang: Space charge enhanced tunneling currents in manganites. PhysicaB 404, 11 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    D. Dimos, W.R. Schwartz, and S.J. Lockwood: Control of leakage resistance in Pb(Zr, Ti)O3 thin films by donor doping. J. Am. Ceram. Soc. 77(11), 3000 (1994).

    CAS  Article  Google Scholar 

  35. 35.

    J.T.S. Irvine, D.C. Sinclair, and A.R. West: Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2(3), 132 (1990).

    CAS  Article  Google Scholar 

  36. 36.

    M. Nadeem, M.J. Akthar, and M.N. Haque: Increase of grain boundary resistance with time by impedance spectroscopy in Laa5Ca0.5MnO3+5 at 77 K. Solid State Commun. 145, 263 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    K. Ragavendran, V. Morchshakov, A. Veluchamy, and K. Barner: Trap state spectroscopy in CMR manganites and spinel manganates using opto-impedance. J. Phys. Chem. Solids 69, 182 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    S. Krohns, J. Lu, P. Lunkenheimer, V. Brize, C. Autret-Lambert, M. Gervais, F. Gervais, F. Bouree, F. Porcher, and A. Loidl: Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12. Eur. Phys. J. B 72, 173 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    K. Barner, H. Deng, H. Wang, M. Annaorazov, I.V. Medvedeva, and C.P. Yang: Trap state capture and reemission relaxation in ceramic La1-xCa MnO3 with Ca-content x=0.51. Physica B 405, 999 (2009).

    Article  Google Scholar 

  40. 40.

    S. Dattagupta: Relaxation Phenomena in Condensed Matter Physics (Academic Press, New York, 1987), pp. 113f, 19.

    Google Scholar 

  41. 41.

    C. Kittel: Introduction to Solid State Physics, 5’ Edition, edited by R. Oldenbourg (John Wiley & Sons, Inc., New York, 1976), p. 333.

Download references

Author information



Corresponding author

Correspondence to C. P. Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barner, K., Luo, X.J., Song, X.P. et al. Correlation between the trap state spectra and dielectric behavior of CaCu3Ti4O12. Journal of Materials Research 26, 395–406 (2011).

Download citation