Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates

Abstract

Tin oxide (SnO2) nanotubes have been synthesized using carbon nanotubes (CNTs) as removable templates. The entire synthesis takes place on the microscale on a micromachined hotplate, without the use of photolithography, taking advantage of the device’s built-in heater. Well-aligned multiwalled CNT forests were grown directly on microhotplates at 600 °C using a bimetallic iron/alumina composite catalyst and acetylene as precursor. Thin films of anhydrous SnO2 were then deposited onto the CNT forests through chemical vapor deposition of tin nitrate at 375 °C. The CNTs were then removed through a simple anneal process in air at temperatures above 450 °C, resulting in SnO2 nanotubes. Gas sensing measurements indicated a substantial improvement in sensitivity to trace concentrations of methanol from the SnO2 nanotubes in comparison with a SnO2 thin film. The synthesis technique is generic and may be used to create any metal oxide nanotube structure directly on microscale substrates.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    J. Suehle, R.E. Cavicchi, M. Gaitan, and S. Semancik: Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Lett. 14, 118 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    P.B. Weisz: Effects of electronic change transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).

    CAS  Article  Google Scholar 

  3. 3.

    J.F. McAleer, P.T. Moseley, J.O.W. Noris, D.E. Williams, and B.C. Tofield: Tin dioxide gas sensors. Part 1: Aspects of the surface chemistry revealed by electrical conductance variations. J. Chem. Soc, Faraday Trans. 1 F 83, 1323 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    P.T. Moseley: Solid state gas sensors. Meas. Sci. Technol. 8, 223 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    W.Y. Chung, J.W. Lim, D.D. Lee, N. Miura, and N. Yamazoe: Thermal and gas-sensing properties of planar-type micro gas sensor. Sens. Actuators, B 64, 118 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    H. Ogawa, M. Nishikawa, and A. Abe: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).

    CAS  Article  Google Scholar 

  7. 7.

    A. Kolmakov, Y. Chang, G. Cheng, and M. Moskovits: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    P.M. Parthangal, R.E. Cavicchi, C.B. Montgomery, S. Turner, and M.R. Zachariah: Restructuring tungsten thin films into nanowires and hollow square cross-section microducts. J. Mater. Res. 20, 2889 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    P.M. Parthangal, R.E. Cavicchi, and M.R. Zachariah: A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture. Nanotechnology 17, 3786 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    Y.X. Liang, Y.J. Chen, and T.H. Wang: Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 85, 666 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Zhang, J. Liu, R. He, Q. Zhang, X. Zhang, and J. Zhu: Synthesis of alumina nanotubes using carbon nanotubes as templates. Chem. Phys. Lett. 360, 579 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Sun, H. Yuan, Z. Liu, B. Han, and X. Zhang: A highly efficient chemical sensor material for H2S: Alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj: Zirconia nanotubes. Chem. Commun. (Comb.) 16, 1581 (1997).

    Article  Google Scholar 

  17. 17.

    B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick, and C.N.R. Rao: Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12, 604 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    W.Q. Han and A. Zettl: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    L. Fu, Z. Liu, Y. Liu, B. Han, J. Wang, P. Hu, L. Cao, and D. Zhu: Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv. Mater. 16, 350 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    Y.S. Min, E.J. Bae, K.S. Jeong, Y.J. Cho, J.H. Lee, W.B. Choi, and G.S. Park: Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater. 15, 1019 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    A. Gomathi, S.R.C. Vivekchand, A. Govindaraj, and C.N.R. Rao: Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 17, 2757 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    N.D. Hoa, N. Van Quy, H. Song, Y. Kang, Y. Cho, and D. Kim: Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. J. Cryst. Growth 311, 657 (2009).

    Article  Google Scholar 

  23. 23.

    Y. Jia, L. He, Z. Guo, X. Chen, F. Meng, T. Luo, M. Li, and J. Liu: Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties. J. Phys. Chem. C 113 (22), 9581 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    P.M. Parthangal, R.E. Cavicchi, and M.R. Zachariah: A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18, 185605 (2007).

    Article  Google Scholar 

  25. 25.

    R.E. Cavicchi, S. Semancik, F. DiMeo, and C.J. Taylor: Featured article: Use of microhotplates in the controlled growth characterization of metal oxides for chemical sensing. J. Electroceram. 9, 155 (2003).

    Article  Google Scholar 

  26. 26.

    L. Gajdosik: The derivation of the electrical conductance/ concentration dependency for SnO2 gas sensor for ethanol. Sens. Actuators, B 81, 347 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    A. Kolmakov: Some recent trends in the fabrication, functionalisa-tion and characterisation of metal oxide nanowire gas sensors. Int. J. Nanotechnol. 5(4/5), 450 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    D.P. Woodruff and T.A. Delchar: Modern Techniques of Surface Science, 2nd ed. (Cambridge University Press, Cambridge, UK, 1994), p. 108.

    Google Scholar 

  29. 29.

    W.K. Choi, H.J. Jung, and S-K.J. Koh: Chemical shifts and optical properties of tin oxide films grown by a reactive ion-assisted deposition. J. Vac. Sci. Technol, A 14, 359 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    K.D. Childs, B.A. Carlson, L.A. LaVanier, J.F. Moulder, D.F. Paul, W.F. Stickle, and D.G. Watson: Handbook of Auger Electron Spectroscopy, 3rd ed., edited by C. Hedberg (Physical Electronics, Inc., Eden Prairie, MN, 1995), p. 404.

  31. 31.

    T. Sahma, L. Madler, A. Gurlo, N. Barsan, S.E. Pratsinis, and U. Weimar: Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens. Actuators, B 98, 148 (2004).

    Article  Google Scholar 

  32. 32.

    C. Nayral, E. Viala, P. Fau, F. Senocq, J.C. Jumas, and A. Maisonnat: Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chemistry 6, 4082 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    W. Lei, D. Jun, C.H. Mao, Y.H. Xiong, and Z.M. Yang: Enhancement of hydrogen gas-sensing properties of Sn02-based thin film with Ni surface modification, in Proceedings of the 7th International Conference on Electronic Measurement and Instruments, Vol. 5, edited by J.M. Qi and J.P. Cui (International Academic Publishers LTD, Hong Kong, China, 2005), p. 531.

    Google Scholar 

  34. 34.

    S. Chakraborty, A. Sen, and H.S. Maiti: Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors. Sens. Actuators, B 115, 610 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    G.G. Mandayo, E. Castano, F.J. Gracia, A. Cirera, A. Cornet, and J.R. Morante: Enhancement of hydrogen gas-sensing properties of SnO2-based thin film with Ni surface modification. Sens. Actuators, B 95, 90 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    R.S. Niranjan, S.R. Sainkar, K Vijayamohanan, and I.S. Mulla: Ruthenium: Tin oxide thin film as a highly selective hydrocarbon sensor. Sens. Actuators, B 82, 82 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    J. Tiffany, R.E. Cavicchi, and S. Semancik: Microarray study of temperature dependent sensitivity and selectivity of metal/oxide sensing interfaces, in Advanced Environmental and Chemical Sensing Technology, Vol. 4205, edited by T. VoDinh and S. Buttgenbach and (SPIE-International Society for Optical Engineering, Bellingham, WA, 2001), p. 240.

    CAS  Article  Google Scholar 

  38. 38.

    J.C. Kim, H.K Jun, J.S. Huh, and D.D. Lee: Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens. Actuators, B 45, 271 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    C. Cane, I. Gracia, A. Gotz, L. Fonseca, E. Lora-Tamayo, M.C. Horrillo, I. Sayago, J.I. Robla, J. Rodrigo, and J. Gutierrez: Detection of gases with arrays of micromachined tin oxide gas sensors. Sens. Actuators, B 65, 244 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    B.K. Dable, K.S. Booksh, R.E. Cavicchi, and S. Semancik: Calibration of microhotplate conductometric gas sensors by non-linear multivariate regression methods. Sens. Actuators, B 101, 284 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    R.E. Cavicchi, J.S. Suehle, K.G. Kreider, M. Gaitan, and P. Chaparala: Fast temperature programmed sensing for micro-hotplate gas sensors. IEEE Electron Device Lett. 16, 286 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard E. Cavicchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parthangal, P., Cavicchi, R.E., Meier, D.C. et al. Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates. Journal of Materials Research 26, 430–436 (2011). https://doi.org/10.1557/jmr.2010.27

Download citation