Reaction mechanism of self-propagating high-temperature synthesis reaction in the Ni–Ti–B4C system

Abstract

The SHS reaction in the Ni–Ti–B4C system starts with the formation of Ni–Ti and Ni–B intermetallic compounds from the solid interacted reaction among the reactants and, subsequently, the formation of Ni–Ti and Ni–B liquid at the eutectic point. Meanwhile, some C atoms from the reaction between Ni and B4C can dissolve into Ni–Ti liquid to form TiC. The heat generated from these reactions can promote the mutual diffusion of Ni–Ti–C and Ni–B liquid and simultaneously accelerate the formation of Ni–Ti–C–B liquid. Finally the precipitation of TiC and TiB2 occur when the C and B atoms in the liquid become supersaturated. The addition of Ni not only promotes the occurrence of the self-propagating high temperature synthesis (SHS) reaction by forming Ni–Ti liquid, but also accelerates the SHS reaction by forming Ni–B liquid and dissociative C. The early appearance of dissociative C from the reaction between Ni and B4C causes the formation of TiC prior to that of TiB2.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1

    S.C. Tjong Z.Y. Ma: Microstructural and mechanical characteristics of in-situ metal matrix composites. Mater. Sci. Eng., R 29, 49 2000

    Article  Google Scholar 

  2. 2

    H. Zhao Y.B. Cheng: Formation of TiB2–TiC composites by reactive sintering. Ceram. Int. 25, 353 1999

    CAS  Article  Google Scholar 

  3. 3

    M.W. Barsoum B. Houng: Transient plastic phase processing of titanium–boron–carbon composites. J. Am. Ceram. Soc. 76, 1445 1993

    CAS  Article  Google Scholar 

  4. 4

    P. Mogilevsky, E.Y. Gutmanas, I. Gotman R. Telle: Reactive formation of coatings at boron carbide interface with Ti and Cr powders. J. Eur. Ceram. Soc. 15, 527 1995

    CAS  Article  Google Scholar 

  5. 5

    J.X. Tang, H.Z. Miao Z.Q. Zeng: Analysis of reaction path between Ti and B4C. Acta Metall. Sinica 36, 833 2000

    CAS  Google Scholar 

  6. 6

    L. Contreras, X. Turrillas, G.B.M. Vaughan, A. Kvick M.A. Rodríguez: Time-resolved XRD study of TiC–TiB2 composites obtained by SHS. Acta Mater. 52, 4783 2004

    CAS  Article  Google Scholar 

  7. 7

    G.Q. Xiao, Q.C. Fan, M.Z. Gu, Z.H. Wang Z.H. Jin: Dissolution-precipation mechanism of self-propagating high-temperature synthesis of TiC–Ni cermet. Mater. Sci. Eng., A 382, 132 2004

    Article  Google Scholar 

  8. 8

    J.C. LaSalvia, D.K. Kim, R.A. Lipsett M.A. Meyers: Combustion synthesis in the Ti–C–Ni–Mo system. Part I. Micromechanisms. Metall. Mater. Trans. A 26, 3001 1995

    Article  Google Scholar 

  9. 9

    J.C. LaSalvia M.A. Meyers: Combustion synthesis in the Ti–C–Ni–Mo system: Part II. Analysis. Metall. Mater. Trans. A 26, 3011 1995

    Article  Google Scholar 

  10. 10

    G.Q. Xiao, Q.C. Fan, M.Z. Gu Z.H. Jin: Microstructural evolution during the combustion synthesis of TiC–Al cermet with larger metallic particles. Mater. Sci. Eng., A 425, 318 2006

    Article  Google Scholar 

  11. 11

    Y.X. Li, J.D. Hu, H.Y. Wang Z.X. Guo: Dissolution-precipitation mechanism of laser igniting self-propagating high-temperature synthesis of Al/TiC composite. Adv. Eng. Mater. 9, 689 2007

    CAS  Article  Google Scholar 

  12. 12

    Q.C. Fan, H.F. Chai Z.H. Jin: Role of iron addition in combustion synthesis of TiC–Fe cermet. J. Mater. Sci. 32, 4319 1997

    CAS  Article  Google Scholar 

  13. 13

    Q.C. Fan, H.F. Chai Z.H. Jin: Mechanism of combustion synthesis of TiC–Fe cermet. J. Mater. Sci. 34, 115 1999

    CAS  Article  Google Scholar 

  14. 14

    P. Shen, B.L. Zou, S.B. Jin Q.C. Jiang: Reaction mechanism in self-propagating high temperature synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system. Mater. Sci. Eng., A 454–455, 300 2007

    Article  Google Scholar 

  15. 15

    Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao Q.C. Jiang: Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni–Ti–B4C system. INT. J. Refract. Met. H 26, 77 2008

    CAS  Article  Google Scholar 

  16. 16

    Powder Diffraction File. Alphabetical Indexes International Center for Diffraction Data Newton Square, PA 2000

  17. 17

    T.B. Massalski, H. Okamoto, P.R. Subramanian L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed. ASM International Metals Park, OH 1990

    Google Scholar 

  18. 18

    Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao Q.C. Jiang: Effect of nickel addition on the thermal reaction of titanium and boron caibide. J. Mater. Res. 22, 169 2007

    CAS  Article  Google Scholar 

  19. 19

    D. Brodkin, S.R. Kalidindi, M.W. Barsoum A. Zavaliangos: Microstructural evolution during transient plastic phase processing of titanium carbide–titanium boride composites. J. Am. Ceram. Soc. 79, 1945 1996

    CAS  Article  Google Scholar 

  20. 20

    D.L. Hildenbrand W.F. Hall: The decomposition pressure of boron carbide and the heat of sublimation of boron. J. Phys. Chem. 68, 989 1964

    CAS  Article  Google Scholar 

  21. 21

    D. Emin: Structure and single-phase regime of boron carbides. Phys. Rev. B 38, 6041 1988

    CAS  Article  Google Scholar 

  22. 22

    G.H. Kwei B. Morosin: Structures of the boron-rich boron carbides from neutron powder diffraction: Implications for the nature of the inter-icosahedral chains. J. Phys. Chem. 100, 8031 1996

    CAS  Article  Google Scholar 

  23. 23

    R. Lazzari, N. Vast, J.M. Besson, S. Baroni A.D. Corso: Atomic structure and vibrational properties of icosahedral B4C boron carbide. Phys. Rev. Lett. 83, 3230 1999

    CAS  Article  Google Scholar 

  24. 24

    B. Morosin, G.H. Kwei, A.C. Lawson, T.L. Aselage D. Emin: Neutron powder diffraction refinement of boron carbides nature of intericosahedral chains. J. Alloys Compd. 22, 6121 1995

    Google Scholar 

  25. 25

    I. Jimenez, D.G.J. Sutherland, T. Van Buuren, J.A. Carlisle, L.J. Terminello F.J. Himpsel: Photoemission and x-ray-absorption study of boron carbide and its surface thermal stability. Phys. Rev. B 57, 13167 1998

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by The National Natural Science Foundation of China (NNSFC) (No. 50531030), The Ministry of Science and Technology of the People’s Republic of China (MSTC) (Nos. 2006AA03Z566 and 2005CCA00300), and New Century Excellent Talents in University (NCET) (No. 06-0308) as well as The Project 985-Automotive Engineering of Jilin University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q.C. Jiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Y., Wang, H., Zhao, R. et al. Reaction mechanism of self-propagating high-temperature synthesis reaction in the Ni–Ti–B4C system. Journal of Materials Research 23, 2519–2527 (2008). https://doi.org/10.1557/jmr.2008.0317

Download citation