Adhesion of nanostructured diamond film on a copper–beryllium alloy

Abstract

Microwave plasma chemical vapor deposition (CVD) was used to coat nanostructured diamond onto a copper–beryllium alloy (∼1.7 wt% Be) commonly used as a nonmagnetic gasket material in diamond anvil cell devices. The coating is expected to be useful in preventing plastic flow of Cu–Be gaskets in diamond anvil cell devices, thus allowing for increased sample volume at high pressures and leading to improved sensitivity of magnetic measurements. The coatings were characterized by Raman spectroscopy, glancing-angle x-ray diffraction, microscopy (optical, scanning electron, and atomic force), Rockwell indentation, and nanoindentation. CVD diamond deposition on pure copper substrates has historically resulted in poor coating adhesion caused by the very large thermal expansion mismatch between the substrate and coating as well as the inability of copper to form a carbide phase at the interface. While an interfacial graphite layer formed on the pure copper substrates and resulted in complete film delamination, well-adhered 12.5 μm thick nanostructured diamond coatings were produced on the copper–beryllium (Cu–Be) alloy. The nanostructured diamond coatings on Cu–Be exhibit hardness of up to 84 GPa and can withstand strains from Rockwell indentation loads up to 150 kg without delamination.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
TABLE II.
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1

    Y.K. Vohra S.T. Weir: Designer diamond anvils in high pressure research—Recent results and future opportunities in High-Pressure Phenomena, edited by R.J. Hemley, G.I. Chiarotti, M. Bernascoini, and L. Ulivi (Proc. International School of Physics—Enrico fermi, Course CXLVII IOS Press Amsterdam 2002 87–105

  2. 2

    S. Merkel, R. Hemley H-K. Mao: Finite-element modeling of diamond deformation at multimegabar pressures. Appl. Phys. Lett. 74, 656 1999

    CAS  Article  Google Scholar 

  3. 3

    J. Akella, S.T. Weir, Y.K. Vohra, H. Prokop, S.A. Catledge G.N. Chesnut: High pressure phase transformations in neodymium studied in a diamond anvil cell using diamond-coated rhenium gaskets. J. Phys.: Condens. Matter 11, 6515 1999

    CAS  Google Scholar 

  4. 4

    D. Jackson, C. Aracne-Ruddle, V. Malba, S.T. Weir, S.A. Catledge, Y.K. Vohra: Magnetic susceptibility measurements at high pressure using designer diamond anvils. Rev. Sci. Instrum. 74, 2467 2003

    CAS  Article  Google Scholar 

  5. 5

    D. Zuo, X.F. Li, M. Wang, L. Li W.Z. Lu: Adhesion improvement of CVD diamond film by introducing an electro-deposited interlayer. J. Mater. Process. Technol. 138, 455 2003

    CAS  Article  Google Scholar 

  6. 6

    J. Narayan, V.P. Godbole, G. Matera R.K. Singh: Enhancement of nucleation and adhesion of diamond films on copper, stainless steel, and silicon substrates. J. Appl. Phys. 71, 966 1992

    CAS  Article  Google Scholar 

  7. 7

    M.N.R. Ashfold, P.W. May, C.A. Rego N.M. Everitt: Thin film diamond by chemical vapour deposition methods. Chem. Soc. Rev. 23, 21 1994

    CAS  Article  Google Scholar 

  8. 8

    M. Vedawyas, G. Sivananthan A. Kumar: Textured polycrystalline diamond films on Cu metal substrates by hot filament chemical vapor deposition. Mater. Sci. Eng., B 78, 16 2000

    Article  Google Scholar 

  9. 9

    Q.H. Fan, E. Pereira J. Grácio: Diamond deposition on copper: Studies on nucleation, growth, and adhesion behaviours. J. Mater. Sci. 34, 1353 1999

    CAS  Article  Google Scholar 

  10. 10

    Q.H. Fan, A. Fernandes, E. Pereira J. Grácio: Adherent diamond coating on copper using an interlayer. Vacuum 52, 193 1999

    CAS  Article  Google Scholar 

  11. 11

    J. Singh: Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition. J. Mater. Sci. 29, 2761 1994

    CAS  Article  Google Scholar 

  12. 12

    T.P. Ong, F. Xiong, R.P.H. Chang C.W. White: Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J. Mater. Res. 7, 2429 1992

    CAS  Article  Google Scholar 

  13. 13

    B.V. Spitzyn, L.L. Bouilov B.V. Derjaguin: Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 52, 219 1981

    Article  Google Scholar 

  14. 14

    J. Narayan, V.P. Godbole C.W. White: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 1991

    CAS  Article  Google Scholar 

  15. 15

    S.A. Catledge, J. Borham, Y.K. Vohra, W.R. Lacefield J.E. Lemons: Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films. J. Appl. Phys. 91, 5347 2002

    CAS  Article  Google Scholar 

  16. 16

    N. Toprani, S.A. Catledge, Y.K. Vohra R. Thompson: Interfacial adhesion and toughness of nanostructured diamond coatings. J. Mater. Res. 15, 1052 2000

    CAS  Article  Google Scholar 

  17. 17

    S.A. Catledge Y.K. Vohra: Effect of nitrogen feedgas addition on the mechanical properties of nano-structured carbon coatings in Mechanical Properties of Structural Films, ASTM STP 1413 edited by C.L. Muhlstein and S.T. Brown ASTM International West Conshohocken, PA 2001 127–138

    Google Scholar 

  18. 18

    B.D. Fabes, W.C. Oliver, R.A. McKee F.J. Walker: The determination of film hardness from the composite response of film and substrate to nanometer scale indentations. J. Mater. Res. 7, 3056 1992

    CAS  Article  Google Scholar 

  19. 19

    J. McHargue: In Applications of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman Materials Science Monographs 73, Elsevier Amsterdam 1991 113

    Article  Google Scholar 

  20. 20

    W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    CAS  Article  Google Scholar 

  21. 21

    S.A. Catledge, W. Comer Y.K. Vohra: In situ diagnostics of film thickness and surface roughness of diamond films on a Ti–6Al–4V alloy by optical pyrometry. Appl. Phys. Lett. 73, 181 1998

    CAS  Article  Google Scholar 

  22. 22

    P. Ascarelli S. Fontana: Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments. Appl. Surf. Sci. 64, 307 1993

    CAS  Article  Google Scholar 

  23. 23

    B. Lux R. Haubner: In Diamond and Diamond-like Films and Coatings, edited by R.E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl Plenum Press New York 1991 579

  24. 24

    G. Popovici M.A. Prelas: Nucleation and selective deposition of diamond thin films. Phys. Status Solidi A 132, 233 1992

    CAS  Article  Google Scholar 

  25. 25

    S. Bühlmann, E. Blank, R. Haubner B. Lux: Characterization of ballas diamond depositions. Diam. Relat. Mater. 8, 194 1999

    Article  Google Scholar 

  26. 26

    A.C. Ferrari J. Robertson: Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405R 2001

    Article  Google Scholar 

  27. 27

    R. Pfeiffer, H. Kuzmany, P. Knoll, S. Bokova, N. Salk B. Günther: Evidence for trans-polyacetylene in nano-crystalline diamond films. Diamond Relat. Mater. 12, 268 2003

    CAS  Article  Google Scholar 

  28. 28

    Powder Diffraction File, Card Nos. 75-0623 and 85-1326 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 2001.)

  29. 29

    R. Berman: Properties and Growth of Diamond, edited by G. Davies EMIS Data Reviews Series No. 9 INSPEC London 1994 23–26

  30. 30

    Data obtained from online resource: http://www.brushwellman.com/alloy/tech_lit/GuideToCopperBeryllium.pdf

  31. 31

    S. Chowdhury, D.A. Hillman, S.A. Catledge, V. Konovalov Y.K. Vohra: Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H2/CH4/N2 gas mixture. J. Mater. Res. 21, 2675 2006

    CAS  Article  Google Scholar 

  32. 32

    A. Leyland A. Matthews: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 2000

    CAS  Article  Google Scholar 

  33. 33

    J. Halling: Surface films in tribology. Tribol. 1, 15 1982

    Google Scholar 

  34. 34

    H. Liu D.S. Dandy: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond Relat. Mater. 4, 1173 1995

    CAS  Article  Google Scholar 

  35. 35

    S. Veprek: The search for novel, superhard materials. J. Vac. Sci. Technol., A 17, 2401 1999

    CAS  Article  Google Scholar 

  36. 36

    A.A. Voevodin J.S. Zabinski: Load-adaptive crystalline–amorphous nanocomposites. J. Mater. Sci. 33, 319 1998

    CAS  Article  Google Scholar 

  37. 37

    S.D. Wolter, B.R. Stoner, G-H.M. Ma J.T. Glass: In vacuo surface analytical studies of diamond nucleation on copper versus silicon in Novel Forms of Carbon, edited by C.L. Renschler, J.J. Pouch, and D.M. Cox Mater. Res. Soc. Symp. Proc. 270 Pittsburgh, PA, 1992 347

Download references

Acknowledgments

This material is based on work supported by the Department of Energy (DOE)—National Nuclear Security Administration (NNSA) under Grant No. DE-FG52-06NA26168. The authors would like to thank Dr. Mark Koopman for his assistance in SEM measurements and Dr. Shafiul Chowdhury for assistance with measurement of Rockwell indent dimensions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shane A. Catledge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catledge, S.A., Vohra, Y.K., Jackson, D.D. et al. Adhesion of nanostructured diamond film on a copper–beryllium alloy. Journal of Materials Research 23, 2373–2381 (2008). https://doi.org/10.1557/jmr.2008.0287

Download citation