Skip to main content
Log in

Dy3+-doped chalcohalide glass for 1.3-μm optical fiber amplifiers

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dy3+-doped GeSe2–Ga2Se3–CsI chalcohalide glasses were prepared. The thermal stabilities, optical properties, emission properties, and structure of the glasses were investigated. Upon excitation with a 808-nm diode laser, 1.32-μm near-infrared fluorescence was observed with a broad full width at half-maximum of about 90 nm. It was found the 1.32-μm fluorescence lifetime of the Dy3+-doped GeSe2–Ga2Se3–CsI glass depends on the I/Ga molar ratio and the amount of Ga2Se3 and CsI. The longest lifetime is >2.5 ms. It is noted that the value is significantly higher than those in other Dy3+-doped glasses. The enhancement of lifetime can be attributed to a decreased local phonon mode, which dominates the multiphonon relaxation. Meanwhile, it is interesting to note that the GeSe2–Ga2Se3–CsI glasses have shown good infrared transmittance. As a result, Dy3+-doped GeSe2–Ga2Se3–CsI glasses have been considered to be an attractive host for a 1.3-μm optical fiber amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
TABLE II
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE III
FIG. 6
TABLE IV
TABLE V
TABLE VI
TABLE VII

Similar content being viewed by others

References

  1. B. Dussardier, D.W. Hewak, B.N. Samson, H.J. Tate, J. Wang D.H. Payne: Pr3+-doped Cs:Ga:S:Cl glass for efficient 1.3 μm optical fiber amplifier. Electron. Lett. 31, 206 1995

    Article  CAS  Google Scholar 

  2. Z. Yang, W. Chen L. Luo: Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3 μm optical fiber amplifiers. J. Non-Cryst. Solids 351, 2531 2005

    Google Scholar 

  3. J. Heo: 1.3-μm-emission properties and local structure of Dy3+ in chalcohalide glasses. C. R. Chimie 5, 739 2002

    Article  CAS  Google Scholar 

  4. D.W. Hewak, B.N. Samson, J.A. Medeiros Neto, R.I. Laming D.N. Payne: Emission at 1.3 μm from dysprosium-doped Ga:La:S glass. Electron. Lett. 30, 968 1994

    Article  CAS  Google Scholar 

  5. K. Wei, D.P. Machewirth, J. Wenzel, E. Snitzer, G.H. Sigel Jr.: Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-μm fiber-optical amplifier applications. Opt. Lett. 19, 904 1994

    Article  CAS  Google Scholar 

  6. J. Wang, J.R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore D.N. Payne: Halide-modified Ga-La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3 μm. Appl. Phys. Lett. 71(13), 1753 1997

    Article  CAS  Google Scholar 

  7. Z. Yang, W. Chen L. Luo: Red color GeSe2-based chalcohalide glasses for infrared optics. J. Am. Ceram. Soc. 89(7), 2327 2006

    CAS  Google Scholar 

  8. A.A. Kaminskii: Crystalline Lasers: Physical Processes and Operation Schemes CRC Press Boca Raton, FL 1996 227–306

    Google Scholar 

  9. P. Němec, B. Frumarová M. Frumar: Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses. J. Non-Cryst. Solids 270, 137 2000

    Article  Google Scholar 

  10. Z. Yang, G. Tang, L. Luo W. Chen: Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses. Appl. Phys. Lett. 89, 131117 2006

    Article  Google Scholar 

  11. Yu.S. Tver’yanovich, M. Vlček A. Tverjanovich: Formation of complex structural units and structure of some chalco-halide glasses. J. Non-Cryst. Solids 333, 85 2004

    Article  Google Scholar 

  12. B.R. Judd: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 1962

    Article  CAS  Google Scholar 

  13. G.S. Ofelt: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 1962

    Article  CAS  Google Scholar 

  14. Y. Guimond, J.L. Adam, A.M. Jurdyc, J. Mugnier, B. Jacquier X.H. Zhang: Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers. Opt. Mater. 12, 467 1999

    Article  CAS  Google Scholar 

  15. P. Němec, B. Frumarová, M. Frumar J. Oswald: Optical properties of low-phonon-energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses. J. Phys. Chem. Solids 61, 1583 2000

    Article  Google Scholar 

  16. J.L. Adam, A.D. Docq J. Lucas: Optical transitions of Dy3+ ions in fluorozirconate glass. J. Solid State Chem. 75, 403 1988

    Article  CAS  Google Scholar 

  17. R.D. Peacock: The intensities of lanthanide f-f transitions. Struct. Bonding (Berlin) 22, 83 1975

    Article  CAS  Google Scholar 

  18. M.B. Saisudha J. Ramakrishna: Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses. Phys. Rev. B: Condens. Matter 53, 6186 1996

    Article  CAS  Google Scholar 

  19. B. Cole, L.B. Shaw, P.C. Pureza, R. Mossadegh, J.S. Sanghera I.D. Aggarwal: Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR. J. Non-Cryst. Solids 256–257, 253 1999

    Article  Google Scholar 

  20. G. Tang, J. Zhu, Y. Zhu C. Bai: The study on properties of Eu3+-doped fluorogallate glasses. J. Alloys Compd. 2007 DOI: 10.1016/j.jallcom.2007.04.291

    Google Scholar 

  21. B.F. Aull H.P. Jenssen: Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated-emission cross sections. IEEE J. Quantum Electron. 18, 925 1982

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Manned Space Program of the People’s Republic of China (the 921-2.1 Project).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao Tang or Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, G., Yang, Z., Luo, L. et al. Dy3+-doped chalcohalide glass for 1.3-μm optical fiber amplifiers. Journal of Materials Research 23, 954–961 (2008). https://doi.org/10.1557/jmr.2008.0139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0139

Navigation