Postpressing dependence of the effective electron diffusion coefficient in electrophoretically prepared nanoporous ZnO and TiO2 films


The porosity of electrophoretically prepared nanoporous ZnO and TiO2 films was systematically decreased by postpressing at different pressures. The nanoporous structure of the films was fixed by sintering after the postpressing procedure. The postpressing-induced change of the internal surface area of the nanoporous films was monitored using the dye-removal technique. The effective electron diffusion coefficient (Deff) of the unpressed nanoporous films depended on the thickness according to Fick’s second law. When pressed, the diffusion coefficient of the films increases significantly. In nanoporous TiO2, the increase of Deff follows the percolation theory where transport rate depends on the particle-coordination number. In contrast to the TiO2 films, the value of Deff of pressed nanoporous ZnO films changed with the porosity much stronger than one would expect from the percolation theory with hard spheres. This property has been attributed to the strong increase of necking between ZnO nanoparticles with increasing pressure as indicated by a strong decrease of the internal surface area.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1

    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos M. Grätzel: Conversion of light to electricity by cis-X2-bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 1993

    CAS  Article  Google Scholar 

  2. 2

    B. O’Regan M. Grätzel: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 1991

    Article  Google Scholar 

  3. 3

    C.J. Bardé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover M. Grätzel: Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157 1997

    Google Scholar 

  4. 4

    Y.F. Gao M. Nagai: Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells. Langmuir 22, 3936 2006

    CAS  Article  Google Scholar 

  5. 5

    J.J. Wu, G.R. Chen, H.H. Yang, C.H. Ku J.Y. Lai: Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. 90, 213109 2007

    Article  Google Scholar 

  6. 6

    J. Tornow K. Schwarzburg: Transient electrical response of dye-sensitized ZnO nanorod solar cells. J. Phys. Chem. C 111, 8692 2007

    CAS  Article  Google Scholar 

  7. 7

    J. de van Lagemaat, K.D. Benkstein A.J. Frank: Relation between particle-coordination number and porosity in nanoparticle films: Implications to dye-sensitized solar cells. J. Phys. Chem. B 105, 12433 2001

    Article  Google Scholar 

  8. 8

    H. Lindstrom, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist A. Hagfeldt: A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett. 1, 97 2001

    Article  Google Scholar 

  9. 9

    A. Ofir, T. Dittrich, S. Tirosh, L. Grinis A. Zaban: Influence of sintering temperature, pressing, and conformal coatings on electron diffusion in electrophoretically deposited porous TiO2. J. Appl. Phys. 100, 74317 2006

    Article  Google Scholar 

  10. 10

    T. Dittrich, A. Ofir, S. Tirosh, L. Grinis A. Zaban: Influence of the porosity on diffusion and lifetime in porous TiO2 layers. Appl. Phys. Lett. 88, 182110 2006

    Article  Google Scholar 

  11. 11

    CRC Handbook of Chemistry and Physics CRC Press Boca Raton, FL 1991

  12. 12

    S. Kirkpatrick: Percolation and conduction. Rev. Mod. Phys. 45, 574 1973

    Article  Google Scholar 

  13. 13

    Y. Izyumov: Spin-wave theory of ferromagnetic crystals containing impurities. Proc. Phys. Soc. London 87, 505 1966

    CAS  Article  Google Scholar 

  14. 14

    J. Bernasconi H.J. Wiesmann: Effective-medium theories for site-disordered resistance networks. Phys. Rev. B 13, 1131 1976

    Article  Google Scholar 

  15. 15

    K.D. Benkstein, N. Kopidakis, J. de van Lagemaat A.J. Frank: Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B 107, 7759 2003

    CAS  Article  Google Scholar 

  16. 16

    S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita H. Naramoto: Preparation of epitaxial TiO2 films by pulsed laser deposition technique. Thin Solid Films 401, 88 2001

    CAS  Article  Google Scholar 

Download references


The authors thank the Israeli Ministry of Infrastructure for the funding of this research.

Author information



Corresponding author

Correspondence to A. Zaban.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dor, S., Dittrich, T., Ofir, A. et al. Postpressing dependence of the effective electron diffusion coefficient in electrophoretically prepared nanoporous ZnO and TiO2 films. Journal of Materials Research 23, 975–980 (2008).

Download citation