Enhancement of plasticity in Zr-based bulk metallic glasses


We present evidence that a minor adjustment in Zr/Ni concentration ratio can dramatically enhance the plasticity of monolithic Zr-based bulk metallic glasses (BMGs) from about 2.2% for Zr65Al8Ni10Cu17 BMG to 14% for Zr62Al8Ni13Cu17 BMG. No deformation-induced nanocrystallization appears in a 55% strained Zr62Al8Ni13Cu17 BMG without catastrophic failure while pre-existing nanocrystals in Zr65Al8Ni10Cu17 BMG result in its limited plasticity. Also note that the stability of Zr62Al8Ni13Cu17 BMG against crystallization upon deformation is somewhat higher than that of Zr65Al8Ni10Cu17 BMG. As determined by x-ray diffraction using synchrotron radiation, the enhanced plasticity of Zr62Al8Ni13Cu17 BMG seems to be related to the relative homogeneity of the amorphous structure.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1

    H.A. Bruck, T. Christman, A.J. Rosakis W.L. Johnson: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 1994

    CAS  Article  Google Scholar 

  2. 2

    A. Inoue, C. Fan, J. Saida T. Zhang: High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles. Sci. Technol. Adv. Mater. 1, 73 2000

    CAS  Article  Google Scholar 

  3. 3

    Y.C. Kim, J.H. Na, J.M. Park, D.H. Kim, J.K. Lee W.T. Kim: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003

    CAS  Article  Google Scholar 

  4. 4

    M. Calin, J. Eckert L. Schultz: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 2003

    CAS  Article  Google Scholar 

  5. 5

    C.C. Hays, C.P. Kim W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000

    CAS  Article  Google Scholar 

  6. 6

    U. Kühn, J. Eckert, N. Mattern L. Schultz: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002

    Article  Google Scholar 

  7. 7

    C. Fan, R.T. Ott T.C. Hufnagel: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002

    CAS  Article  Google Scholar 

  8. 8

    B.P. Kanungo, S.C. Glade, P. Asoka-Kumar K.M. Flores: Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics 12, 1073 2004

    CAS  Article  Google Scholar 

  9. 9

    W.J. Wright, T.C. Hufnagel W.D. Nix: Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 93, 1432 2003

    CAS  Article  Google Scholar 

  10. 10

    V. Bengus, E. Tabachnikova, K. Csach, J. Miskuf V. Ocelik: Possible local superplasticity of amorphous metallic alloys in the catastrophic shear band under low temperature ductile shear failure. Scripta Mater. 35, 781 1996

    CAS  Article  Google Scholar 

  11. 11

    J.J. Lewandowski A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 2006

    CAS  Article  Google Scholar 

  12. 12

    J. Schroers W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004

    Article  Google Scholar 

  13. 13

    J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury K. Hono: Phase separation in Cu43Zr43Al7Ag7. Scripta Mater. 53, 165 2005

    CAS  Article  Google Scholar 

  14. 14

    J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005

    Article  Google Scholar 

  15. 15

    K.B. Kim, J. Das, F. Baier, M.B. Tang, W.H. Wang J. Eckert: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 2006

    Article  Google Scholar 

  16. 16

    M.W. Chen, A. Inoue, W. Zhang T. Sakurai: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 2006

    Article  Google Scholar 

  17. 17

    S-W. Lee, M-Y. Huh, E. Fleury J-C. Lee: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006

    CAS  Article  Google Scholar 

  18. 18

    Z.F. Zhang, J. Eckert L. Schultz: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003

    CAS  Article  Google Scholar 

  19. 19

    L.Q. Xing, Y. Li, K.T. Ramesh, J. Li T.C. Hufnagel: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B, 64, 180201(R) 2001

    Article  Google Scholar 

  20. 20

    H. Kato, J. Saida A. Inoue: Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5−xPdx (x = 0, 17.5) alloys. Scripta Mater. 51, 1063 2004

    CAS  Article  Google Scholar 

  21. 21

    R. Bouchard, D. Hupfeld, T. Lippmann, J. Neuefeind, H-B. Neumann, H.F. Poulsen, U. Rütt, T. Schmidt, J.R. Schneider, J. Süssenbach M. von Zimmermann: A triple-crystal diffractometer for high energy synchrotron radiation at the HASYLAB high field wiggle beamline BW5. Synchrotron Radiat. 5, 90 1998

    CAS  Article  Google Scholar 

  22. 22

    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch D. Häusermann: Two-dimensional detector software: From real detector to idealized image or two theta scan. High Press. Res. 14, 235 1996

    Article  Google Scholar 

  23. 23

    I-K. Jeong, J. Thompson, A.M.P. Turner S.J.L. Billinge: PDFgetX: A program for obtaining the atomic pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 34, 536 2001

    CAS  Article  Google Scholar 

  24. 24

    W. Li, Y. Wang, M. Cai C.W. Wang: An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds. J. Appl. Phys. 98, 083503 2005

    Article  Google Scholar 

  25. 25

    N. Kioussis, M. Herbranson, E. Collins M.E. Eberhart: Topology of electronic charge density and energetics of planar faults in planar faults in fcc metals. Phys. Rev. Lett. 88, 125501 2002

    Article  Google Scholar 

Download references


The authors would like to thank the HASYLAB staff at Hamburg, Germany, for the assistance during the measurements at BW5. Financial support from the National Natural Science Foundation of China (Grant Nos. 50425102 and 50601021), the Ministry of Science and Technology of China (Grant Nos. 2004/249/37-14 and 2004/250/31-01A), the Ministry of Education of China (Grant Nos. 2.005E+10 and 2005-55), Zhejiang University-Helmholtz cooperation, and the EU-project (Ductile BMG Composites MRTN-CT-2003-504692) is gratefully acknowledged.

Author information



Corresponding authors

Correspondence to X. D. Wang or J. Z. Jiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X.D., Yang, L., Jiang, J.Z. et al. Enhancement of plasticity in Zr-based bulk metallic glasses. Journal of Materials Research 22, 2454–2459 (2007). https://doi.org/10.1557/jmr.2007.0324

Download citation