Structure and microstructure of near infrared-absorbing Au–Au2S nanoparticles

Abstract

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE II.
FIG. 9

References

  1. 1

    J.V. Frangioni: In vivonear-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626 2003

    CAS  Article  Google Scholar 

  2. 2

    R. Weissleder: A clearer vision for in vivoimaging. Nat. Biotechnol. 19, 316 2001

    CAS  Article  Google Scholar 

  3. 3

    S.J. Oldenburg, R.D. Averitt, S.L. Westcott N.J. Halas: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 1998

    CAS  Article  Google Scholar 

  4. 4

    C. Loo, A. Lowery, N. Halas, J. West R. Drezek: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 2005

    CAS  Article  Google Scholar 

  5. 5

    L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas J.L. West: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 2003

    CAS  Article  Google Scholar 

  6. 6

    S. Sershen J. West: Implantable, polymeric systems for modulated drug delivery. Adv. Drug Delivery Rev. 54, 1225 2002

    CAS  Article  Google Scholar 

  7. 7

    L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas J.L. West: A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377 2003

    CAS  Article  Google Scholar 

  8. 8

    L. Ren G.M. Chow: Synthesis of NIR-sensitive Au–Au2S nanocolloids for drug delivery. Mater. Sci. Eng., C 23, 113 2003

    Article  Google Scholar 

  9. 9

    G.M. Chow, M.C. Tan, L. Ren J.Y. Ying: NIR-sensitive nanoparticle. U.S. Patent (Application Pending) No. 2006099146 (2006)

    Google Scholar 

  10. 10

    C. Kittel Introduction to Solid State Physics 8 ed. John Wiley & Sons Hoboken, NJ 2005

    Google Scholar 

  11. 11

    U. Kreibig M. Vollmer: Optical Properties of Metal Clusters Springer Berlin 1995

    Google Scholar 

  12. 12

    S. Link M.A. El-Sayed: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 1999

    CAS  Article  Google Scholar 

  13. 13

    S. Link M.A. El-Sayed: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409 2000

    CAS  Article  Google Scholar 

  14. 14

    H.S. Zhou, I. Honma H. Komiyama: Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B: Solid State 50, 12052 1994

    CAS  Article  Google Scholar 

  15. 15

    R.D. Averitt, D. Sarkar N.J. Halas: Plasmon resonance shifts of Au-coated Au2S nanoshells. Phys. Rev. Lett. 78, 4217 1997

    CAS  Article  Google Scholar 

  16. 16

    R.D. Averitt, S.L. Westcott N.J. Halas: Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 16, 1824 1999

    CAS  Article  Google Scholar 

  17. 17

    T.J. Norman Jr., C.D. Grant, D. Magana, J.Z. Zhang, J. Liu, D. Cao, F. Bridges A.V. Buuren: Near infrared optical absorption of gold nanoparticle aggregates. J. Phys. Chem. B 106, 7005 2002

    CAS  Article  Google Scholar 

  18. 18

    S. Licht: Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 1988

    CAS  Article  Google Scholar 

  19. 19

    M.C. Tan, J.Y. Ying G.M. Chow to be submitted

  20. 20

    H.P. Klug L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2 ed. John Wiley & Sons New York 1974

    Google Scholar 

  21. 21

    D.C. Koningsberger R. Prins: X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES John Wiley & Sons New York 1988

    Google Scholar 

  22. 22

    J.J. Rehr R.C. Albers: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 3 2000

    Article  Google Scholar 

  23. 23

    S.J. Gurman: Interpretation of EXAFS data. J. Synchrotron Rad. 2, 56 1995

    CAS  Article  Google Scholar 

  24. 24

    E.A. Stern: Theory of the extended x-ray absorption fine structure. Phys. Rev. B 10, 3027 1974

    CAS  Article  Google Scholar 

  25. 25

    D.E. Sayers, E.A. Stern F.W. Lytle: New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys. Rev. Lett. 27, 1204 1971

    CAS  Article  Google Scholar 

  26. 26

    J. Petiau, P. Sainctavit G. Calas: K x-ray absorption spectra and electronic structure of chalcopyrite, CuFeS2. Mater. Sci. Eng., B 1, 237 1988

    Article  Google Scholar 

  27. 27

    L. Ren G.M. Chow Singapore-MIT Alliance (2003, unpublished work)

    Google Scholar 

  28. 28

    J.J. Rehr, R.C. Albers S.I. Zabinsky: High-order multiple-scattering calculations of x-ray absorption fine structure. Phys. Rev. Lett. 69, 3397 1992

    CAS  Article  Google Scholar 

  29. 29

    E.A. Stern, M. Newville, B. Ravel, Y. Yacoby D. Haskel: The UWXAFS analysis package: Philosophy and details. Physica B 208–209, 117 1995

    Article  Google Scholar 

  30. 30

    J.F. Watts J. Wolstenholme: An Introduction to Surface Analysis by XPS and AES John Wiley & Sons New York 2003

    Google Scholar 

  31. 31

    M. Gillet: Structure of small metallic particles. Surf. Sci. 67, 139 1977

    CAS  Article  Google Scholar 

  32. 32

    N. Uyeda, M. Nishino E. Suito: Nucleus interactions and fines structures of colloidal gold particles. J. Colloid Interface Sci. 43, 264 1972

    Article  Google Scholar 

  33. 33

    S. Ino: Epitaxial growth of metals on rocksalt faces cleaved in vacuum: II. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Jpn. 21, 346 1966

    CAS  Article  Google Scholar 

  34. 34

    T. Komoda: Study on the structure of evaporated gold particles by means of high resolution electron microscope. Jap. J. Appl. Phys. 7, 27 1968

    CAS  Article  Google Scholar 

  35. 35

    P. Jena, S.N. Khanna B.K. Rao: Physics and Chemistry of Finite Systems: From Clusters to Crystals Vol. 1, Kluwer Academic Dordrecht 1992 93

    Google Scholar 

  36. 36

    L. Wang, H. Liu, K. Chen Z. Hu: The local orientational orders and structures of liquid and amorphous metals Au and Ni during rapid solidification. Physica B 239, 267 1997

    CAS  Article  Google Scholar 

  37. 37

    P. Wynblatt R.C. Ku: Surface energy and solute strain energy effects in surface segregation. Surf. Sci. 65, 511 1977

    CAS  Article  Google Scholar 

  38. 38

    F. Liu H. Metiu: Dynamics of phase separation of crystal surfaces. Phys. Rev. B 48, 5808 1993

    CAS  Article  Google Scholar 

  39. 39

    S.S. Shankar, A. Rai, A. Ahmad M. Sastry: Controlling the optical properties of lemon grass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17, 566 2005

    CAS  Article  Google Scholar 

  40. 40

    S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad M. Sastry: Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482 2004

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore-Massachusetts Institute of Technology Alliance and National University of Singapore (NUS) Academic Research Grant. G.M. Chow acknowledges the support of the United States Office of Naval Research. The authors thank Changhai Wang, Xingyu Gao, Chengjun Sun, and Giuseppe Faraci for assistance with data collection at the synchrotron beam lines. The support of beam time from National Synchrotron Radiation Research Center (Taiwan), Singapore Synchrotron Light Source, and European Synchrotron Radiation Facility (Grenoble, France) is acknowledged. The authors thank Binghai Liu for assistance in TEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gan Moog Chow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tan, M.C., Ying, J.Y. & Chow, G.M. Structure and microstructure of near infrared-absorbing Au–Au2S nanoparticles. Journal of Materials Research 22, 2531–2538 (2007). https://doi.org/10.1557/jmr.2007.0314

Download citation