Effect of elevated substrate temperature on growth, properties, and structure of indium tin oxide films prepared by reactive magnetron sputtering

Abstract

The paper correlates the growth and structure formation with the properties of indium-tin-oxide (ITO) films fabricated by pulsed reactive magnetron deposition onto amorphous substrates held at elevated temperatures ranging from room temperature to 510 °C. The evolution of the microstructure is consistent with the well-known structure zone model. The temperature dependence of the film texture is described with consideration of the interplay between the shadowing and surface-diffusion processes. It is shown that deposition at elevated temperatures lowers the crystallization threshold and is more effective in reducing resistivity than the postdeposition vacuum annealing at comparable temperatures. The films grown at a substrate temperature of 400 and 510 °C have the lowest resistivity of 1.2 × 10−4 Ω cm, the highest free electron density of 1.2 to 1.0 × 1021 cm−3, and mobility of 35–42 cm2 V−1 s−1 and exhibit the strongest (222) texture with the largest grain size.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1

    B.G. Lewis D.C. Paine: Applications and processing of transparent conducting oxides. MRS Bull. 25(8), 22 2000

    Article  Google Scholar 

  2. 2

    I. Hamberg C.G. Granqvist: Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 1986

    CAS  Article  Google Scholar 

  3. 3

    R.B.H. Tahar, T. Ban, Y. Ohya Y. Takahashi: Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83, 2631 1998

    Article  Google Scholar 

  4. 4

    M. Kamei, Y. Shigesato, I. Yasui, N. Taga S. Takaki: Comparative study of heteroepitaxial and polycrystalline tin-doped indium oxide films. J. Non-Cryst. Solids 218, 267 1997

    CAS  Article  Google Scholar 

  5. 5

    H. Wulff, M. Quaas H. Steffen: Investigation of plasma-deposited ITO films by GIXR and GIXRD. Thin Solid Films 355–356, 395 1999

    Article  Google Scholar 

  6. 6

    M. Kamei, Y. Shigesato S. Takaki: Origin of characteristic grain-subgrain structure of tin-doped indium oxide films. Thin Solid Films 259, 38 1995

    CAS  Article  Google Scholar 

  7. 7

    G. Frank H. Köstlin: Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A: Solids Surf. 27, 197 1982

    Article  Google Scholar 

  8. 8

    G.B. Gonzalez, T.O. Mason, J.P. Quintana, O. Warschkow, D.E. Ellis, J-H. Hwang, J.P. Hodges J.D. Jorgensen: Defect structure studies of bulk and nano-indium-tin oxide. J. Appl. Phys. 96, 3912 2004

    CAS  Article  Google Scholar 

  9. 9

    J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius D. Burgard: Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Phys. Rev. B 68, 155410 2003

    Article  CAS  Google Scholar 

  10. 10

    H. Fujivara M. Kondo: Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption. Phys. Rev. B 71, 075109 2005

    Article  CAS  Google Scholar 

  11. 11

    A. Rogozin, N. Shevchenko, M. Vinnichenko, F. Prokert, V. Cantelli, A. Kolitsch W. Moeller: Real-time evolution of the indium tin oxide film properties and structure during annealing in vacuum. Appl. Phys. Lett. 85, 212 2004

    CAS  Article  Google Scholar 

  12. 12

    A. Rogozin, N. Shevchenko, M. Vinnichenko, M. Seidel, A. Kolitsch W. Möller: Annealing of indium tin oxide films by electric current: Properties and structure evolution. Appl. Phys. Lett. 89, 061908 2006

    Article  CAS  Google Scholar 

  13. 13

    A.I. Rogozin, M.V. Vinnichenko, A. Kolitsch W. Moeller: Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering. J. Vac. Sci. Technol., A 22, 349 2004

    CAS  Article  Google Scholar 

  14. 14

    A. Rogozin, M. Vinnichenko, N. Shevchenko, A. Kolitsch W. Moeller: Plasma influence on the properties and structure of indium tin oxide films produced by reactive middle frequency pulsed magnetron sputtering. Thin Solid Films 496, 197 2006

    CAS  Article  Google Scholar 

  15. 15

    U. Kreissig, R. Gago, M. Vinnichenko, P. Fernández-Hidalgo, R.J. Martín-Palma J.M. Martínez-Duart: Heavy-ion ERDA and spectroscopic ellipsometry characterization of a SiOC:H layered structure as functional coating on polymeric lenses. Nucl. Instr. Methods Phys. Res. B 219–220, 908 2004

    Article  CAS  Google Scholar 

  16. 16

    H-E. Cheng M-H. Hon: Texture formation in titanium nitride films prepared by chemical vapour deposition. J. Appl. Phys. 79, 8047 1996

    CAS  Article  Google Scholar 

  17. 17

    JCPDS-ICDD No. 6-416. Joint Committee on Powder Diffraction Standards ASTM Philadelphia, PA 1991

  18. 18

    J.C. Bravman R. Sinclair: The preparation of cross-section specimens for transmission electron-microscopy. J. Elect. Mic. Tech. 1, 53 1984

    CAS  Article  Google Scholar 

  19. 19

    S.K. Choi J.I. Lee: Effect of film density on electrical properties of indium oxide films deposited by dc magnetron sputtering. J. Vac. Sci. Technol., A 19, 2043 2001

    CAS  Article  Google Scholar 

  20. 20

    W. Fukarek H. Kersten: Application of dynamic in situ ellipsometry to the deposition of tin-doped indium oxide films by reactive direct-current magnetron sputtering. J. Vac. Sci. Technol., A 12, 523 1994

    CAS  Article  Google Scholar 

  21. 21

    S. Berg T. Nyberg: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215 2005

    CAS  Article  Google Scholar 

  22. 22

    J.A. Thornton: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4, 3059 1986

    CAS  Article  Google Scholar 

  23. 23

    I. Petrov, P.B. Barna, L. Hultman J.E. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21, 1 2003

    Article  CAS  Google Scholar 

  24. 24

    S. Muranaka: Crystallization of amorphous In2O3 films during film growth. Jpn. J. Appl. Phys. 30, L2062 1991

    CAS  Article  Google Scholar 

  25. 25

    S. Muranaka, Y. Bando T. Takada: Influence of substrate temperature and film thickness on the structure of reactively evaporated In2O3. Thin Solid Films 151, 355 1987

    CAS  Article  Google Scholar 

  26. 26

    C.W. Ow-Yang, D. Spinner, Y. Shigesato D.C. Paine: A time-resolved reflectivity study of the amorphous-to-crystalline transformation kinetics in dc-magnetron sputtered indium tin oxide. J. Appl. Phys. 83, 145 1998

    CAS  Article  Google Scholar 

  27. 27

    P.C.P. Bronsveld, J.K. Rath, R.E.I. Schropp, T. Mates, A. Fejfar, B. Rezek J. Kočka: Internal structure of mixed phase hydrogenated silicon thin films made at 39 degrees C. Appl. Phys. Lett. 89, 051922 2006

    Article  CAS  Google Scholar 

  28. 28

    U. Geyer, U. von Hülsen P. Thiyagarajan: Surface roughening and columnar growth of thin amorphous CuTi films. Appl. Phys. Lett. 70, 1691 1997

    CAS  Article  Google Scholar 

  29. 29

    E. Nishimura, H. Ohkawa, P.K. Song Y. Shigesato: Microstructures of ITO films deposited by d.c. magnetron sputtering with H2O introduction. Thin Solid Films 445, 235 2003

    CAS  Article  Google Scholar 

  30. 30

    S. Ishibashi, Y. Higuchi, Y. Ota K. Nakamura: Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol., A 8, 1399 1990

    CAS  Article  Google Scholar 

  31. 31

    J.E. Greene, J-E. Sundgren, L. Hultman, I. Petrov D.B. Bergstrom: Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Appl. Phys. Lett. 67, 2928 1995

    CAS  Article  Google Scholar 

  32. 32

    Y.S. Jung S.S. Lee: Development of indium tin oxide film texture during DC magnetron sputtering deposition. J. Cryst. Growth 259, 343 2003

    CAS  Article  Google Scholar 

  33. 33

    K. Ellmer, R. Mientus H. Rossner: In situ investigation by energy dispersive x-ray diffraction (EDXRD) of the growth of magnetron sputtered ITO films. Surf. Coat. Technol. 142–144, 1094 2001

    Article  Google Scholar 

  34. 34

    M. Quaas, H. Steffen, R. Hippler H. Wulff: Influence of microstructure on oxygen diffusion in plasma-deposited In/Sn films. Thin Solid Films 420–421, 306 2002

    Article  Google Scholar 

  35. 35

    N. Yamada, I. Yasui, Y. Shigesato, H. Li, Y. Ujihira K. Nomura: Effect of substrate temperature on the structural, electrical and optical properties of ITO films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 39, 4158 2000

    CAS  Article  Google Scholar 

  36. 36

    D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow Yang B. Lewis: A study of low temperature crystallization of amorphous thin film indium–tin–oxide. J. Appl. Phys. 85, 8445 1999

    CAS  Article  Google Scholar 

  37. 37

    H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe H. Hosono: Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed laser deposition. Appl. Phys. Lett. 76, 2740 2000

    CAS  Article  Google Scholar 

  38. 38

    A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama M. Okuda: Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume. Jpn. J. Appl. Phys. 40, L401 2001

    CAS  Article  Google Scholar 

  39. 39

    A. Suzuki, T. Matsushita, T. Aoki M. Okuda: Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition. Thin Solid Films 411, 23 2002

    CAS  Article  Google Scholar 

  40. 40

    P. Nath, R.F. Bunshah, B.M. Basol O.M. Staffsud: Electrical and optical properties of In2O3: Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463 1980

    CAS  Article  Google Scholar 

  41. 41

    I.A. Rauf: Low resistivity and high mobility tin-doped indium oxide films. Mater. Lett. 18, 123 1993

    CAS  Article  Google Scholar 

  42. 42

    J.R. Bellingham, W.A. Phillips C.J. Adkins: Intrinsic performance limits in transparent conducting oxides. J. Mater. Sci. Lett. 11, 263 1992

    CAS  Article  Google Scholar 

  43. 43

    S. Ray, R. Banerjee, N. Basu, A.K. Batabyal A.K. Barua: Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 54, 3497 1983

    CAS  Article  Google Scholar 

  44. 44

    T.J. Coutts, D.L. Young X. Li: Characterization of transparent conducting oxides. MRS Bull. 25(8), 58 2000

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to H. Reuther for Auger analysis and to B. Schmidt for preparation of thermally oxidized Si wafers. The AFM studies were carried out with financial support from the Spanish Ministerio de Eduicacion y Ciencia Grant No. FIS2006-12253-C06-03.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Rogozin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogozin, A., Vinnichenko, M., Shevchenko, N. et al. Effect of elevated substrate temperature on growth, properties, and structure of indium tin oxide films prepared by reactive magnetron sputtering. Journal of Materials Research 22, 2319–2329 (2007). https://doi.org/10.1557/jmr.2007.0293

Download citation