Abstract
The nature of magnetoelectric (ME) interactions has been investigated in lead zirconate titanate (PZT) and (111) or (110) single-crystal nickel zinc ferrites. Data on the dependence of low-frequency ME voltage coefficients on static magnetic field orientation show (i) highest ME coefficients for bias field H along [100] and the smallest for H parallel to [110] and (ii) strongest ME interactions for transverse fields and for samples with Zn concentration of 0.3. Measurements on frequency dependence of ME coefficients reveal resonance enhancement due to bending and radial acoustic modes. The highest voltage coefficient is measured for radial modes in a sample with Zn concentration of 0.2. Theoretical estimates of low-frequency and resonance ME parameters are in very good agreement with data.
This is a preview of subscription content, access via your institution.






References
- 1
T.G. Lupeiko, I.V. Lisnevskaya, M.D. Chkheidze B.I. Zvyagintsev: Laminated magnetoelectric composites based on nickel ferrite and PZT materials. Inorg. Mater. 31, 1139 1995
- 2
J. Ryu, A.V. Carazo, K. Uchino H. Kim: Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948 2001
- 3
K. Mori M. Wuttig: Magnetoelectric coupling in terfenol-D/polyvinylidenedifluoride composites. Appl. Phys. Lett. 81, 100 2002
- 4
S. Dong, J. Zhai, J.F. Li D. Viehland: Magnetoelectric effect in terfenol-D/Pb(Zr,Ti) O3/μ-metal laminate composites. Appl. Phys. Lett. 89, 122903 2006
- 5
N. Cai, C.W. Nan, J. Zhai Y. Lin: Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics rare-earth alloys and polymers. Appl. Phys. Lett. 84, 35 2004
- 6
G. Srinivasan, E.T. Rasmussen, B.J. Levin R. Hayes: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 2002
- 7
G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Yu.I. Bokhan V.M. Laletin: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 2001
- 8
G. Srinivasan, E.T. Rasmussen R. Hayes: Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: Studies on the influence of zinc substitution in ferrites. Phys. Rev. B 67, 014418 2003
- 9
M.I. Bichurin, D.A. Fillipov, V.M. Petrov, U. Laletsin G. Srinivasan: Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 2003
- 10
U. Laletsin, N. Paddubnaya, G. Srinivasan C.P. DeVreugd: Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78, 33 2004
- 11
S. Dong, J. Zhai, F. Bai, J.F. Li D. Viehland: Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87, 062502 2005
- 12
Z. Xing, S. Dong, J. Zhai, L. Yan, J.F. Li D. Viehland: Resonant bending mode of terfenol-D/steel/Pb(Zr,Ti)O magnetoelectric laminate composites. Appl. Phys. Lett. 89, 112911 2006
- 13
J.G. Wan, J.M. Liu, H.L.W. Chand, C.L. Choy, G.H. Wang C.W. Nan: Giant magnetoelectric effect of a hybrid magnetostrictive and piezoelectric composite. J. Appl. Phys. 93, 9916 2003
- 14
S. Shastry, G. Srinivasan, M.I. Bichurin, V.M. Petrov A.S. Tatarenko: Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate–lead titanate. Phys. Rev. B 70, 064416 2004
- 15
M.I. Bichurin, V.M. Petrov G. Srinivasan: Theory of low frequency magnetoelectric coupling in magnetostrictive–piezoelectric bilayers. Phys. Rev. B 68, 054402 2003
- 16
M.I. Bichurin, V.M. Petrov G. Srinivasan: Theory of low frequency magnetoelectric effects in ferrite–lead zirconate titanate layered samples. J. Appl. Phys. 92, 7681 2002
- 17
A.M. Balbashov, L.N. Rybina, Y.K. Fetisov, V.F. Meshcheryakov G. Srinivasan: The floating zone crystal growth of Ni, Co, Ni–Co, Ni–Zn, and Co–Zn ferrospinels under high oxygen pressure. J. Cryst. Growth 275, e733 2005
- 18
C.J. Smithells Metals: Reference Book, Vol. 1, Butterworths 1962 281
- 19
K. Tanaka, E. Takata K. Ohwada: Anodic bonding of lead zirconate titanate ceramics to silicon with intermediate glass layer. Sens. Actuat. A 69, 199 1998
- 20
Landolt–Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, Vol. 4(b), Magnetic and Other Properties of Oxides, edited by K-H. Hellwege and A.M. Springer Springer–Verlag New York 1970
- 21
A.H. Morrish The Physical Principles of Magnetism John Wiley New York 1965
ACKNOWLEDGMENTS
The work at Oakland University was supported by a grant from the National Science Foundation (DMR-0606253). The work at Novgorod State University was supported by the Russian Foundation for Basic Research (Project No. 06-08-00896-a).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gheevarughese, V., Laletsin, U., Petrov, V. et al. Low-frequency and resonance magnetoelectric effects in lead zirconate titanate and single-crystal nickel zinc ferrite bilayers. Journal of Materials Research 22, 2130–2135 (2007). https://doi.org/10.1557/jmr.2007.0267
Received:
Published:
Issue Date: