Formation of multiferroic thin-film heterostructure (BiAl:YIG/La:PMNT) via a wet chemical process

Abstract

A novel multiferroic thin-film heterostructure exhibiting both ferromagnetic (FM) and ferroelectric (FE) properties, as well as magneto-optic (MO) and electro-optic (EO) properties, was fabricated via a wet chemical route. Oxide buffer layers were used to allow the growth of ferroelectric lanthanum modified lead magnesium niobate titanate (La:PMNT) layer on top of ferromagnetic bismuth and aluminum substituted yttrium iron garnet (BiAl:YIG). X-ray diffractometer (XRD) analysis confirmed the formation of both crystalline structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface and cross-section morphologies of the resulted heterostructure. Multiferroic properties of the film were investigated.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1718 2003

    Google Scholar 

  2. 2

    T. Kimura, T. Goto, H. Shinatani, K. Ishizaka, T. Arima Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55 2003

    CAS  Article  Google Scholar 

  3. 3

    Z.J. Huang, Y. Cao, Y. Sun, Y.Y. Xue C.W. Chu: Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623 1997

    CAS  Article  Google Scholar 

  4. 4

    J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla R. Guo: Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 2006

    Article  Google Scholar 

  5. 5

    G.L. Yuan, K.Z. Baba-Kishi, J.M. Liu, S.W. Or, Y.P. Wang Z.G. Liu: Multiferroic properties of single-phase Bi0.850.85La0.15FeO3 lead-free ceramics. J. Am. Ceram. Soc. 89, 3136 2006

    CAS  Article  Google Scholar 

  6. 6

    J. Cheng, S. Yu, J. Chen, Z. Meng L.E. Cross: Dielectric and magnetic enhancements in BiFeO3-PbTiO3 solid solutions with La doping. Appl. Phys. Lett. 89, 122911 2006

    Article  Google Scholar 

  7. 7

    G. Srinivasan, E.T. Rasmussen, B.J. Levin R. Hayes: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 2002

    Article  Google Scholar 

  8. 8

    N. Cai, C.W. Nan, J. Zhai Y. Lin: Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84, 3516 2004

    CAS  Article  Google Scholar 

  9. 9

    S. Shastry, G. Srinivasan, M.I. Bichurin, V.M. Petrov A.S. Tatarenko: Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate–lead titanate. Phys. Rev. B 70, 064416 2004

    Article  Google Scholar 

  10. 10

    W. Eerenstein, N.D. Mather J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 2006

    CAS  Article  Google Scholar 

  11. 11

    K.Y. Zou, Y. Wang, K. Li H. Jiang: Electro-optic and magneto-optic photonic band gap materials in Magneto-Optical Materials for Photonics and Recording, edited by K. Ando, W. Challener, R. Gambino, and M. Levy (Mater. Res. Soc. Symp. Proc. 834, Warrendale, PA, 2005), J1.9.1, 79

    CAS  Google Scholar 

  12. 12

    K. Li, K. Zou, Y. Wang, H. Jiang X. Chen: Ferroelectric films and multilayers with ultrahigh-dielectric constants in Ferroelectric Thin Films XII, edited by S. Hoffmann-Eifert, H. Funakubo, V. Joshi, A.I. Kingon, and I.P. Koutsaroff (Mater. Res. Soc. Symp. Proc. 784, Warrendale, PA, 2004), C8.9.1, 363

    Google Scholar 

  13. 13

    A. Furuya, C. Baubet, H. Yoshikawa, T. Tanabe, M. Yamamoto, P. Tailhades, L. Bouet, C. Despax, L. Presmanes A. Rousset: Suppression of crack formation in garnet film by using a compound glass underlayer. IEEE Trans. Magn. 37, 2407 2001

    CAS  Article  Google Scholar 

  14. 14

    T.J. Zhu, X.B. Zhao L. Lu: Pb(Zr0.52Ti0.48)O3/TiNi multilayered heterostructures on Si substrates for smart systems. Thin Solid Films 515, 1445 2006

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with government supports under the National Aeronautics and Space Administration (NASA) grant NNG04CB08C, and National Science Foundation (NSF) grants DMI-0422094 and DMI-0522177. We are grateful to X. Qi, S.Y. Sung, and B.J.H. Stadler (University of Minnesota) for magnetic property measurements. Also we want to thank Dr. J. Qi (MIT) for helpful discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, X., Zou, Y.K., Li, K.K. et al. Formation of multiferroic thin-film heterostructure (BiAl:YIG/La:PMNT) via a wet chemical process. Journal of Materials Research 22, 2125–2129 (2007). https://doi.org/10.1557/jmr.2007.0266

Download citation